172. β-Cleavage of Bis(homoallylic) Potassium Alkoxides. Two-Step Preparation of Propenyl Ketones from Carboxylic Esters. Synthesis of ar-Turmerone, α-Damascone, β-Damascone, and β-Damascenone

by Roger L. Snowden*, Simon M. Linder, Bernard L. Muller, and Karl H. Schulte-Elte

Firmenich SA, Research Laboratories, CH-1211 Geneva 8
(28.VIII.87)

The transformation of 36 bis(homoallylic) alcohols VII to alkenones IX and \mathbf{X} via β-cleavage of their potassium alkoxides VIIa in HMPA has been investigated (cf. Scheme 2). These studies have established an order of β-cleavage for 2-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1,1-dimethyl-2-propenyl, and benzyl groups in alkoxides 49a-56a and have allowed a comparison between the β-cleavage reaction and the oxy-Cope rearrangement in alkoxides 74a 83a. As illustrative synthetic applications, a two-step preparation of propenyl ketoncs 15-42 from carboxylic esters is described, together with syntheses of ar-turmerone (48), α-damascone $((E)-71)$, β-damascone $((E)$-109), and β-damascenone $((E)$-111).

Introduction. - Recently, we have investigated the thermolytic β-cleavage of homoallylic tertiary potassium alkoxides Ia in hexamethylphosphoric triamide (HMPA) and demonstrated that this reaction is a general synthetic method for the transformation of homoallylic alcohols I to ketones II (Scheme I) [1] [2]. Mechanistically, this transformation involves cleavage of the allylic $\mathrm{C}-\mathrm{C}$ bond in Ia^{1}) followed by irreversible enolate formation from the resulting ketone II induced by either the allylic carbanion III or

[^0]$\mathbf{I a}^{2}$); both processes lead to the formation of alkene \mathbf{V} and the potassium enolate IV which subsequently affords II by protonation.

In continuation of this work, we now describe systematic studies of the β-cleavage of bis(homoallylic) tertiary potassium alkoxides VIIa. In this context, we also report a two-step preparation of propenyl ketones from carboxylic esters ${ }^{3}$) and syntheses of $a r$-turmerone (48), α-damascone (($E)$-71), β-damascone ((E)-109), and β-damascenone $((E)-111)$, the last three compounds being members of the perfumistically valuable family of rose ketones [8].

Results and Discussion. - Two-step Preparation of Propenyl Ketones from Carboxylic Esters: β-Cleavage of Bis(homoallylic) Potassium Alkoxides 1a-14a. A general method for the synthesis of a ketone from a carboxylic ester is a long-standing synthetic problem ${ }^{4}$). For the synthesis of propenyl ketones IX and \mathbf{X}^{5}), we envisaged that an indirect solution to this problem would involve the β-cleavage of a bis(homoallylic) potassium alkoxide VIIa, whose parent alcohol VII would be readily available from a carboxylic ester VI by double addition of an allylic Grignard reagent; protonation of the resulting potassium dienolate VIII would then afford the β, γ - and α, β-unsaturated ketones IX and \mathbf{X} (cf. Scheme 2). Indeed, in the cases studied, this two-step preparation of $\mathbf{I X}$ and \mathbf{X} from

$\mathbf{V I}\left(\mathbf{R}^{1}=\right.$ alkyl, phenyl; $\left.\mathbf{R}^{2}=\mathbf{H}, \mathrm{Me}\right)$ proceeds in good overall yield (cf. Table 1). Thus, treatment of the appropriate methyl carboxylate with an excess of either allylmagnesium chloride or methallylmagnesium chloride, formed in situ under Barbier conditions, in refluxing tetrahydrofuran (THF) afforded, after an aqueous workup, the bis(homoallylic) alcohols $1-14$ in $76-87 \%$ yields. Addition of these alcohols to a slurry of KH (1.1 mol-equiv.) in HMPA ${ }^{6}$) at 20° afforded HMPA solutions of the corresponding potassium

[^1]Table 1. β-Cleavage of Bis(honwallyit) Potassium Alkoxides 1a-14a

Entry	Alcohol VII	R^{1}	R^{2}	$\begin{aligned} & \text { Yield }^{2} \text {) } \\ & {[\%]} \end{aligned}$	Products IX X	$\begin{aligned} & \text { Yield }^{b} \text {) } \\ & {[\%]} \\ & \hline \end{aligned}$
I	1	Bu	H	83	$\left.\mathbf{1 5}_{(6: 1)}^{+}(E / Z)-16^{c}\right)$	75
2	2	Bu	Me	84	$17 \underset{(5: 1)}{+} 18$	79
3	3	i-Bu	H	84	$19 \underset{(5: 1)}{\left.+(E / Z)-20^{c}\right)}$	83
4	4	i-Bu	Me	84	$21+22$	84
5	5	$s-\mathrm{Bu}$	H	80	$\left.23 \underset{(5: 1)}{+}(E / Z)-24^{4}\right)$	79
6	6	$s-\mathrm{Bu}$	Me	82	$25+26$	82
7	7	\square	H	76	$\left.27+(E / Z)-28^{\mathrm{c}}\right)$	81
8	8	\square	Me	84	$29+30$	85
9	9	0	H	76	$\left.31 \underset{(5: 1)}{+}(E / Z)-\mathbf{- 3 2}^{\mathrm{C}}\right)$	84
10	10		Me	84	$33_{(5: 1)}^{+} 34$	83
II	11	$t-\mathrm{Bu}$	H	85	$\left.35 \underset{(7: 1)}{+}(E / Z)-36^{c}\right)$	83
12	12	$t-\mathrm{Bu}$	Me	86	$37 \underset{(3: 1)}{+} \mathbf{3 8}$	79
13	13	Ph	H	87	$\begin{gathered} \left.39+(E / Z)-40^{c}\right) \\ (1.5: 1) \end{gathered}$	84
14	14	Ph	Me	81	$41 \underset{(3: 1)}{+}$	82

${ }^{\text {a }}$) Yield from corresponding methyl carboxylate $V 1$.
${ }^{\text {b }}$) Yield corresponds to the distilled mixture IX/X; analysis by GC/MS coupling and 'H-NMR (360 MHz) spectroscopy (cf. Exper. Part).
${ }^{\text {c }}$) $(E / Z)>5: 1$.
alkoxides 1a-14a which were then heated at 80° for 2 h . Quenching of the cooled reaction mixtures with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extractive workup, and distillation furnished mixtures of the β, γ - and α, β-unsaturated ketones $15-42$ in $75-85 \%$ yield ${ }^{7}$). For characterisation purposes, these isomers were readily separated by chromatography on silica gel and identified from their spectral data (IR, 'H-NMR and MS, cf. Exper. Part). It should be noted that in all cases, the β, γ-unsaturated isomer is the major product, a result which is kinetically controlled and reflects a regioselective protonation of VIII at the α-rather

[^2]than the γ-position. Additionally, when $\mathrm{R}^{2}=\mathrm{H}$ (cf. Scheme 2$)(E)$ - \mathbf{X} is strongly favoured with respect to $\left.(Z)-\mathbf{X}((E / Z) c a .10: 1)^{8}\right)$.

Synthesis of ar-Turmerone (48, cf. Scheme 3). A synthetic application of the aforementioned methodology is illustrated by an efficient synthesis of racemic ar-turmerone (48), a naturally occurring sesquiterpenoid ketone isolated from the rhizomes of Curcuma longa [11]. The synthesis starts from p-methylacetophenone (43) which underwent a Wads-worth-Emmons reaction with the sodium salt of ethyl (diethoxyphosphoryl)acetate to afford the α, β-unsaturated ester $44((E / Z) 4: 1)$ in 84% yield. Catalytic hydrogenation smoothly led to the ester $\mathbf{4 5}$ (97% yield) which was then treated with methallylmagnesium chloride to afford the bis(homoallylic) alcohol $\mathbf{4 6}$ in 77% yield. Treatment of $\mathbf{4 6}$ with KH (1.2 mol-equiv.) in HMPA at 20° resulted in the formation of the potassium alkoxide $46 a$ which was then heated to 40° to effect the β-cleavage and furnish, after an aqueous workup, a $4: 1$ mixture of 48 and its β, γ-unsaturated isomer 47 in 86% yield. Subsequent acid-catalysed equilibration of this mixture ($\mathrm{TsOH} / \mathrm{THF}$, reflux) afforded 48 in 92% yield.

i) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{THF}$; ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH} ;$ iii $) d \mathrm{Cl}, \mathrm{Mg}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$, reflux, then $\mathrm{H}_{3} \mathrm{O}^{\oplus}$; iv) $\mathrm{KH}\left(1.2\right.$ mol-equiv.), $\mathrm{HMPA}, 20^{\circ}$;) $\mathrm{HMPA}, 20-40^{\circ}$, then aq. $\mathrm{NH}_{4} \mathrm{Cl}$; vi) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (cat.), THF, reflux.
β-Cleavage of Tris(homoallylic) Potassium Alkoxides 49a 56a. We next turned our attention to an investigation of the β-cleavage of tris(homoallylic) alkoxides 49a-56a (i.e. VIla: $\mathrm{R}^{1}=$ allyl, benzyl; Table 2). The tris(homoallylic) alcohols $49-56$ were readily prepared ($77-86 \%$ yield) by reaction of the corresponding β, γ-unsaturated methyl carboxylate (for 49-54) or methyl phenylacetate (for 55 and 56) with allylmagnesium chloride or methallylmagnesium chloride in THF. Treatment of 49-56 with KH (1.1 mol-equiv.) in HMPA at 20° was followed by heating of the resulting potassium alkoxides 49a-56a until reaction was complete. After the standard aqueous workup (vide supra), the

[^3]Table 2. β-Cleavage of Tris(homoallylic) Potassium Alkoxides 49a-56a
Entry

```
\({ }^{\text {a }}\) ) Yield from corresponding methyl carboxylate VI.
\({ }^{\text {b }}\) ) \(\beta\)-Cleavage reaction conditions: KH ( 1.1 mol-equiv.), HMPA, 20-40 (for Entries 5-8) or \(80^{\circ}\) (for Entries \(I-4\) ), then aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) soln.; analysis by \(\mathrm{GC} / \mathrm{MS}\) coupling and \({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( 360 MHz ) spectroscopy.
\(\left.{ }^{c}\right)(E, E)-58 /(E, Z)-58 \mathrm{ca} .3: 1\).
\({ }^{\text {J ) }}\) 6-Methyl-1,5-heptadien-4-one (59) (ca. 1\% yield) was also detected.
\(\left.{ }^{5}\right)(2 E, 5 E)-65 /(2 E, 5 Z)-65 \mathrm{ca} .1: 1\).
```

dienones $57-67$ derived from β-cleavages were isolated in $76-84 \%$ yield (cf. Table 2). In each experiment, the product mixture was analysed by TLC, GC/MS coupling, and ${ }^{1}$ H-NMR (360 MHz) spectroscopy, and in three cases (cf. Entries 2-4), purification was effected by chromatography on silica gel to complement this analysis ${ }^{9}$). With 49 as substrate, each allylic group is equivalent and β-cleavage of its potassium alkoxide 49a afforded a 3.3:1 mixture of dienones 57 and 58 (cf. Entry 1). In contrast, alcohols 50-56 represent substrates whose potassium alkoxides 50a-56a may undergo either one of two possible β-cleavages ${ }^{10}$). For 50a-52a (cf. Entries 2-4), these two distinct reaction pathways (Pathways A and B, cf. Scheme 4) are indeed observed and result in the formation of dienone mixtures whose compositions are indicated in Table 2. However, the β-cleavages of 53a-56a result in exclusive cleavage of the 1,1-dimethyl-2-propenyl group and the benzyl group to afford $\mathbf{5 7 / 5 8}$ and $\mathbf{6 2} / \mathbf{6 3}$ (cf. Entries 5-8). The proposed reaction mecha-

[^4]Scheme 4

Pathway A

Pathway B

nism for the β-cleavages of 49a-52a is outlined in Scheme 4^{11}). Thus, the substrate alcohol XI is converted to its potassium alkoxide XIa in which β-cleavage of the allylic $\mathrm{C}-\mathrm{C}$ bonds leads to either XII (Pathway A) or XIV (Pathway B). Rapid enolate formation then gives the potassium dienolates XIII or XV/XV', which undergo equilibration ${ }^{12}$) to their isomeric potassium trienolates XIII' or XV' ${ }^{\prime \prime}$; protonation finally affords dienones $\mathbf{X I I}^{\prime} / \mathbf{X I I \prime}$ and $\mathbf{X I V} \mathbf{V}^{\prime} / \mathbf{X I} \mathbf{V}^{\prime \prime}$, respectively.

Allowing for statistical factors, the product distribution of the dienone mixtures in Entries 2-8 reflects the ease of β-cleavage for 2-propenyl, 1-methyl-2-propenyl, 2-methyl-

[^5]

2-propenyl, 1,1-dimethyl-2-propenyl, and benzyl groups in 50a-56a and thus allows a rough quantitative estimate for their relative rates of cleavage ${ }^{13}$) (cf. Scheme 5). A rational explanation for the observed order of β-cleavage preference for different allylic or benzylic groups probably involves a combination of two factors. Firstly, the release of non-bonding interactions in the substrate tris(homoallylic) potassium alkoxide and secondly, the thermodynamic stability of the allylic (or benzylic) carbanion resulting from the β-cleavage. This would then explain why the 1,1 -dimethyl-2-propenyl and benzyl groups are cleaved more rapidly with respect to the three other allylic groups studied. In addition, the fact that the 2-propenyl group is cleaved more slowly than the 1-methyl-2propenyl group may be a consequence of higher non-bonding interactions in the latter case; in contrast, the 2-propenyl group is cleaved faster than the 2-methyl-2-propenyl group where the relative stability of the allylic carbanion may be the decisive factor.

Synthesis of α-Damascone ($(E)-71$; cf. Scheme 6). The above conclusions concerning the relative ease of β-cleavage for different allylic groups in tris(homoallylic) potassium alkoxides were now tested for the potassium alkoxide 69 a whose β-cleavage of a 2 -propenyl group provides a synthetic access to α-damascone ($(E)-71)$. Thus, treatment of alcohol 69 [13], readily prepared from the reaction between methyl α-cyclogeranate (68) [14] and allylmagnesium chloride in THF (83% yield), with KH (1.1 mol-equiv.) in HMPA at $25-40^{\circ}$, followed by an aqueous workup, resulted in the isolation of a 1.7:1 mixture $70 / 71((E / Z) 1: 1.6)$ in 48% yield which was subsequently equilibrated (TsOH,

Scheme 6

i) $\sim \mathrm{Cl}, \mathrm{Mg}, \mathrm{THF}$, reflux, then $\mathrm{H}_{3} \mathrm{O}^{\oplus}$; ii) $\mathrm{KH}\left(1.1\right.$ mol-equiv.), HMPA, 25°; iii) HMPA, $25-40^{\circ}$, then aq. $\mathrm{NH}_{4} \mathrm{Cl}$; iv) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (cat.), THF, reflux.

[^6]THF, reflux) to (E)-71 in 88% yield $\left.^{14}\right)$. In addition, a $2.4: 1$ mixture $57 / 58((E / Z) 2.8: 1)$ and the trimethylcyclohexenes $72 / 73$ (ca. 1:1 mixture) were isolated in 32 and 39% yields, respectively. Allowing for statistical factors, this reflects a $1.3: 1$ selectivity in favour of β-cleavage of the allylic $\mathrm{C}(4)-\mathrm{C}\left(1^{\prime}\right)$ bond v s. β-cleavage of either one of the two 2 -propenyl groups in $69 a^{15}$). This result is thus in qualitative agreement with the foregoing model studies which showed that substitution of the C -atom adjacent to the alkoxide group, as exemplified by the 1-methyl-2-propenyl and 1,1-dimethyl-2-propenyl groups in 51a-54a, favours β-cleavage of the allylic $\mathrm{C}-\mathrm{C}$ bond.
β-Cleavage of Allylic Bis(homoallylic) Potassium Alkoxides 74a 83a. In principle, allylic homoallylic potassium alkoxides can undergo either an alkoxide-accelerated oxyCope rearrangement [15] or a β-cleavage. In general, it is the former reaction which is preferred, except in cases where a quaternary centre is generated as a consequence of the Cope process [16]. We now decided to study the behaviour of allylic bis(homoallylic) potassium alkoxides XVIa (i.e. VIIa: $\mathrm{R}^{1}=1$-alkenyl) which can also undergo these two reaction pathways (cf. Scheme 7). Thus, an oxy-Cope rearrangement leads to dienone XVIII after protonation of the potassium enolate XVII, whilst a β-cleavage affords the β, γ - and α, β-unsaturated ketones XX/XXI via the potassium dienolate XIX.

The alcohols $\mathbf{7 4 - 8 3}$ were readily prepared in $40-90 \%$ yield by reaction of the corresponding α, β-unsaturated methyl carboxylate with allylmagnesium chloride or methallylmagnesium chloride in THF (Table 3). Treatment of alcohols $74-81$ with KH (1.1 mol-equiv.) in HMPA at 25° afforded, after the standard aqueous workup and distillation, ketones 84-99 derived exclusively from oxy-Cope rearrangements of the potassium alkoxides 74a-81a in 77-86\% yields (cf. Table 3, Entries 1-8). GC-Analysis of the crude product mixtures prior to distillation confirmed the absence of ketones resulting from putative β-cleavages. In contrast, identical preparation and treatment of potassium alkoxides $\mathbf{8 2 a}$ and 83 a furnished a $2: 1$ mixture $100 / 101((E / Z) 1: 1)$ in 43% yield and a 2.8:1 mixture $\mathbf{1 0 2} / \mathbf{1 0 3}$ in $\mathbf{4 8 \%}$ yield, respectively, resulting from oxy-Cope rearrangements, together with the ketones 59/60/61 (3.4:1.4:1; 35\% yield) and 62/63 (2.3:1; 38\% yield), respectively, which derive from β-cleavages (cf. Table 3, Entries 9 and 10). These

[^7]Table 3. Oxy-Cope Rearrangement/ β-Cleavage of Allylic Bis(homoallylic) Potassium Alkoxides 74a-83a
Entry

[^8]results are thus in qualitative agreement with the conclusions drawn by Evans [16] (vide supra) as 74a 83a show a strong bias for the oxy-Cope rearrangement with respect to β-cleavage. Even 82a and 83a, despite the formation of a quaternary centre, exhibit a $1.2: 1$ selectivity in favour of the oxy-Cope process.

Synthesis of β-Damascone ($(E)-109)$ and β-Damascenone ($(E)-111 ; c f$. Scheme 8$)$. The allylic bis(homoallylic) alcohols 106 and 107 were prepared in 86 and 79% yields, respectively, from methyl β-cyclogeranate [14] and methyl β-safranate [17] by reaction with allylmagnesium chloride in THF [13]. Treatment of $\mathbf{1 0 6}$ with KH (1.1 mol-equiv.) in
Scheme 8

108

109 (E/Z) 1.5:1)
iv) 89%
(E)-109
β-damascone

$\left.112^{6}\right)(E / Z)-113$

(E) -111
β-damascenone

(E)-113 (cis/trans 1,6:1)
i) Cl, Mg, THF, reflux, then $\mathrm{H}_{3} \mathrm{O}^{\oplus}$; ii) $\mathrm{KH}\left(1.1\right.$ mol-equiv.) $\mathrm{HMPA}, 25^{\circ}$; iii) HMPA, 25°, then aq. $\mathrm{NH}_{4} \mathrm{Cl}$; ii) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (cat.) THF, reflux.
${ }^{\text {a }}$) 110:

${ }^{\text {b }}$) 112 :
 (cis/trans mixture)

HMPA at 25° resulted in the exclusive formation of products resulting from the β-cleavage of 106a, i.e. a $0.6: 1$ mixture $108 / 109((E / Z) 1.5: 1)$ in 70% yield. Subsequent equilibration (TsOH, THF, reflux) afforded (E)-109 in 89% yield (62% from 106). Analysis (GC and ${ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz})$) of the crude product mixture confirmed the absence ($\leqslant 5 \%$) of products from a putative oxy-Cope rearrangement of 106a. In contrast, subjection of 107 to identical conditions afforded a $1.7: 1$ mixture (71% yield) of $\mathbf{1 1 0} /(E / Z)-111$ (β-cleavage products) and 112/(E / Z)-113 (diastereoisomeric mixtures; oxy-Cope products). Subsequent equilibration (TsOH, THF, reflux) of this crude mixture converted the β, γ - and (Z)-configurated α, β-unsaturated ketones to their (E)-configurated α, β-unsaturated ketones whose chromatographic purification on silica gel furnished (E)-111 (40% yield from 107) and an inseparable $1.6: 1$ mixture (24% yield from 107) of cis- and trans $\left.-(E)-113^{16}\right)$.

[^9]At first sight, these results are surprising. Whereas the comparably substituted potassium alkoxides 82a and 83a exhibit a $1.2: 1$ selectivity for the oxy-Cope rearrangement vs. β-cleavage (cf. Table 3), 106a and 107a show either a total or partial selectivity favouring the latter pathway. This difference in behaviour is possibly due to the presence of the cyclohexene and cyclohexadiene rings which may increase non-bonding interactions in the oxy-Cope transition states of 106a and 107a, thus disfavouring these processes.

Experimental Part

General. Mg turnings for the Grignard reactions were obtained from Mimeta SA (Martigny). Hexamethylphosphoric triamide (HMPA; purum), freshly distilled from CaH_{2} before use, and KH (pract.; ca. 20% in oil) were obtained from Fluka $A G$ (Buchs). GC: Hewlett Packard instrument, model 5890 A : capillary columns Chrompack CPWax $57 C B$ (10 m) and EPSiL $5 C B(10 \mathrm{~m})$. TLC: silica gel 60 (Merck, layer thickness 0.25 mm); R_{f} values calculated using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Column chromatography (CC): silica gel 60 (Merck, $0.063-0.2 \mathrm{~mm}, 70-230$ mesh, $A S T M$). Bulb-to-bulb distillation: Büchi $G K R-50$ oven; b.p. correspond to the air temp. IR spectra (liquid film): Perkin-Elmer 297 spectrometer; cm^{-1}. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra $\left(\mathrm{CDCl}_{3}\right)$: Bruker-WH-360 (360 MHz) or Varian$E M 360(60 \mathrm{MHz})$ spectrometers; unless otherwise indicated, $360-\mathrm{MHz}$ spectra are reported; $\delta(\mathrm{ppm})$ rel. to TMS as internal standard. MS: Varian MAT 112 spectrometer ($c a .70 \mathrm{eV}$); intensities in $\%$ relative to the base peak (100%).

General Procedure for the Preparation of Alcohols 1-14. - A soln. of either allyl chloride or 2-methylallyl chloride (0.25 mol) and the corresponding methy! carboxylate (vide infra; 0.1 mol) in THF (120 ml) was added dropwise to a stirred slurry of Mg turnings $(0.24 \mathrm{~mol})$ in THF (20 ml) under N_{2} at such a rate as to maintain a gentle reflux. After the addition (ca. 1 h), the mixture was refluxed until TLC indicated completion of the reaction ($1-3 \mathrm{~h}$). The cooled mixture was then poured into cold sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. After separation of the two layers, the $\mathrm{H}_{2} \mathrm{O}$ phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{ml})$ and the combined extract washed once with $\mathrm{H}_{2} \mathrm{O}$ and 4 times with sat. aq. NaCl soln., dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Fractional distillation i.v. afforded 1-14 as colourless oils.

4-Butyl-1,6-heptadien-4-ol (1) (83% yield from methyl pentanoate). $R_{f} 0.52$. B.p. $83-87^{\circ} / 15$ Torr ([18]: $87-90^{\circ} / 23$ Torr). IR: 3450 (br.), $3090,1644,1444,1000,920 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.90(t, J=7,3 \mathrm{H})$; $0.80-1.70(6 \mathrm{H}) ; 2.20(d, J=7,4 \mathrm{H}) ; 4.85-5.25(4 \mathrm{H}) ; 5.90(m, 2 \mathrm{H}) . \mathrm{MS}: 168\left(0, M^{+\cdot}\right), 127(11), 85(100), 69(24), 57$ (72), 41 (42).

4-Butyl-2,6-dimethyl-I,6-heptadien-4-ol (2) (84\% yield from methyl pentanoate). $R_{\mathrm{f}} 0.70$. B.p. $102-107^{\circ} / 15$ Torr. IR: 3500 (br.), 3090, 1642, 1458, 1380, 1070, 894. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.90(t, J=7,3 \mathrm{H}) ; 0.80-1.70$ $(4 \mathrm{H}) ; 1.81(6 \mathrm{H}) ; 2.18(s, 4 \mathrm{H}) ; 4.76(2 \mathrm{H}) ; 4.92(2 \mathrm{H}) . \mathrm{MS}: 196\left(0, \mathrm{M}^{+}\right), 141(11), 85(100), 57(62), 55(16), 41$ (17).

4-(2^{\prime}-Methylpropyl)-1,6-heptadien-4-ol (3) (83% yield from methyl 3-methylbutanoatc). $R_{f} 0.42$. B.p. 83-85 $/$ $15 \operatorname{Torr}$ ([18]: $78-80^{\circ} / 28$ Torr). IR: 3480 (br.), $3090,1640,1000,920,880 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.95$ (d, $J=7,6 \mathrm{H}) ; 1.38(d, J=7,2 \mathrm{H}) ; 1.87(m, 1 \mathrm{H}) ; 2.24(d, J=7,4 \mathrm{H}) ; 4.85-5.25(4 \mathrm{H}) ; 5.87(m, 2 \mathrm{H}) . \mathrm{MS}: 168(0$, $\left.M^{+}\right), 127(10), 111$ (3), 85 (100), 69 (30), 57 (94).

2,6-Dimethyl-4-(2^{\prime}-methylpropyl)-I,6-heptadien-4-ol (4) (84% yield from 3-methylbutanoate). $R_{\mathrm{f}} 0.60$. B.p. 101-102 $/ 15$ Torr. IR: 3560 (br.), $3080,1640,1380,1130,1070,892,780 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.95$ (d, $J=7,6 \mathrm{H}) ; 1.41(d, J=7,2 \mathrm{H}) ; 1.83(6 \mathrm{H}) ; 1.87(m, 1 \mathrm{H}) ; 2.23(s, 4 \mathrm{H}) ; 4.77(2 \mathrm{H}) ; 4.93(2 \mathrm{H}) . \mathrm{MS}: 196\left(0, M^{+}\right)$, 141 (9), 85 (100), 69 (3), 57 (92), 55 (24).

4-($I^{\prime}-$ Methylpropyl)-1,6-heptadien-4-ol (5) $\left(80 \%\right.$ yicld from methyl 2 -methylbutanoate). $R_{f} 0.47$. B.p. $88-89^{\circ} /$ 15 Torr. IR: 3500 (br.), 3080, 1640, 1380, 1000, 915, 760. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.91(d, J=7,3 \mathrm{H}) ; 0.94$ (t, $J=7,3 \mathrm{H}) ; 1.00-2.00(3 \mathrm{H}) ; 2.24(d, J=7,4 \mathrm{H}) ; 4.85-5.25(4 \mathrm{H}) ; 5.89(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 168\left(0, M^{+-}\right), 127(7), 1 \mathrm{Il}(4)$, 85 (49), 69 (39), 57 (100).

2,6-Dimethyl-4-(l'-methylpropyl)-I.6-heptadien-4-ol(6) (82% yield from methyl 2 -methylbutanoate). $R_{\mathrm{f}} 0.60$. B.p. $102-105^{\circ} / 15$ Torr. IR: 3560 (br.), $3080,1640,1380,1070,1000,892,760 .^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.90(d$, $J=7,3 \mathrm{H}) ; 0.93(t, J=7,3 \mathrm{H}) ; 1.00-2.00(3 \mathrm{H}) ; 1.83(6 \mathrm{H}) ; 2.21(4 \mathrm{H}) ; 4.73(\mathrm{~m}, 2 \mathrm{H}) ; 4.91(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 196(0$, M^{+}), 141 (7), 85 (56), 57 (100), 55 (25), 41 (17).

4-Cyclopentyl-1,6-heptadien-4-ol (7) (76\% yield from methyl cyclopentancearboxylate). $R_{f} 0.41$. B.p. 32- $37^{\circ} /$ 0.03 Torr. 1R: 3480 (br.), $3060,2940,2860,1638,1440,990,904,640 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.20-2.00(9 \mathrm{H})$; $2.25(d, J=7,4 H) ; 5.03(m, 2 H) ; 5.07(m, 2 H) ; 5.85(m, 2 H)$. MS: $180\left(0, M^{+}\right), 139(4), 97(59), 69(100), 55(7)$, 41 (12).

4-Cyclopentyl-2,6-dimethyl-1,6-heptadien-4-ol ($\mathbf{8}$) (84% yield from methyl cyclopentanecarboxylate). $R_{\mathrm{f}} 0.56$. B.p. $54-60^{\circ} / 0.05$ Torr. IR: 3550 (br.), $3060,2940,2860,1638,1440,1368,1054,890 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right)$: $1.40-1.90(9 \mathrm{H}) ; 1.84(6 \mathrm{H}) ; 2.21(s, 4 \mathrm{H}) ; 4.77(2 \mathrm{H}) ; 4.90(2 \mathrm{H}) . \mathrm{MS}: 208\left(0, \mathrm{M}^{+-}\right), 153(4), 97(59), 83(11), 69(100)$, 55 (15).

4-Cyclohexyl-I,6-heptadien-4-ol (9) (76% yield from methyl cyclohexanecarboxylate). $R_{\mathrm{f}} 0.43$. B.p. 6263° / 0.03 Torr. IR: 3460 (br.), $3060,2910,2850,1636,1440,990,902 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.90-2.10(11 \mathrm{H})$; $2.20(d, J=7,4 \mathrm{H}) ; 5.00(m, 2 \mathrm{H}) ; 5.05(\mathrm{~m}, 2 \mathrm{H}) ; 5.83(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 194\left(0, M^{+}\right), 153(3), 111(40), 83(100), 69(28)$, 55 (30).

4-Cyclohexyl-2,6-dimethyl-1,6-heptadien-4-ol (10) (84% yield from methyl cyclohexanecarboxylate). $R_{\mathrm{f}} 0.63$. B.p. $66-68^{\circ} / 0.03$ Torr. IR: 3550 (br.), $3060,2910,2850,1638,1440,1366,1045,880 .^{'} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right)$: $0.90-2.10(11 \mathrm{H}) ; 1.81(6 \mathrm{H}) ; 2.18(A B, J=14,4 \mathrm{H}) ; 4.70(2 \mathrm{H}) ; 4.89(2 \mathrm{H}) . \mathrm{MS}: 222\left(0, M^{+}\right), 167(3), 111(32), 83$ (100), 55 (32).

4-($l^{\prime}, 1^{\prime}$-Dimethylethyl)-1,6-heptadien-4-ol (11) (85\% yield from methyl 2,2-dimethylpropanoate). $R_{\mathrm{f}} 0.48$. B.p. $80-83^{\circ} / 15$ Torr ([19]: $187.5^{\circ} / 746$ Torr). IR: 3450 (br.), $3090,1640,1400,1370,1000,918,860{ }^{1} \mathrm{H}-\mathrm{NMR}$ (60 $\left.\mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 0.98(s, 9 \mathrm{H}) ; 2.37(d, J=7,4 \mathrm{H}) ; 4.85-5.25(4 \mathrm{H}) ; 5.95(m, 2 \mathrm{H}) . \mathrm{MS}: 168\left(0, M^{+}\right), 127(10), 111$ (5), 85 (32), 69 (71), 57 (100).

4-(l^{\prime}, l^{\prime}-Dimethylethyl)-2,6-dimethyl-1,6-heptadien-4-ol (12) (86% yield from methyl 2,2-dimethylpropanoate). $R_{\mathrm{f}} 0.65$. B.p. $99-101^{\circ} / 15 \mathrm{Torr}$. IR: 3460 (br.), $3080,1640,1400,1275,1090,995,892$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(60 \mathrm{MHz}$; $\left.+\mathrm{D}_{2} \mathrm{O}\right): 0.98(s, 9 \mathrm{H}) ; 1.87(6 \mathrm{H}) ; 2.31(4 \mathrm{H}) ; 4.79(2 \mathrm{H}) ; 4.88(2 \mathrm{H}) . \mathrm{MS}: 196\left(0, M^{+}\right), 141(5), 97(1), 85(23), 69(1)$, 57 (100), 55 (36), 41 (20).

4-Phenyl-1,6-heptadien-4-ol (13) (87% yield from methyl benzoate). $R_{\mathrm{f}} 0.45$. B.p. 127-130 $/ 15$ Torr ([20]: $124-126^{\circ} / 30$ Torr). IR: 3500 (br), 3080, 2990, 1640, 1500, 1448, 1000, $920,704{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 2.58$ $(m, 4 \mathrm{H}) ; 4.80-6.00(6 \mathrm{H}) ; 7.35(5 \mathrm{H})$. MS: $188\left(0, M^{+\star}\right), 147(18), 105(100), 91(1), 77(30), 51(6), 41$ (9).

2,6-Dimethyl-4-phenyl-1,6-heptadien-4-ol (14) (81\% yield from methyl benzoate), $R_{\mathrm{f}} 0.60$. B.p. $73-77^{\circ} / 0.01$ Torr. IR: 3550 (br.), 3080, 1640, 1498, 1443, 1380, 1070, 1030, 900, 730, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.40$ $(6 \mathrm{H}) ; 2.59(\mathrm{~s}, 4 \mathrm{H}) ; 4.68(\mathrm{~m}, 2 \mathrm{H}) ; 4.81(\mathrm{~m}, 2 \mathrm{H}) ; 7.34(5 \mathrm{H}) . \mathrm{MS}: 216\left(0, M^{+}\right), 161(8), 106(6), 105(100), 77(24)$, 55 (3).

General Procedure for the $\boldsymbol{\beta}$-Cleavage of Potassium Alkoxides 1a-14a: Preparation of Ketones 15-42. - A soln. of the corresponding alcohol (10 mmol) in HMPA (5 ml) was added dropwise within 15 min to a stirred slurry of KH (11 mmol) in HMPA (25 ml) at r.t. under N_{2}. The mixture was stirred at r.t. for a further 20 min and then heated at 80° until TLC (after quenching of an aliquot with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. followed by extraction with $\mathrm{Et}_{2} \mathrm{O}$) indicated completion of the reaction ($1-2 \mathrm{~h}$). The cooled mixture was then poured cautiously into cold sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(150 \mathrm{ml})$. Extraction with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{ml})$, washing of the combined org. phase with $\mathrm{H}_{2} \mathrm{O}$, sat. aq. $\mathrm{NaHCO} \mathrm{N}_{3}$ and sat. aq. NaCl soln., drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentration at atmospheric pressure followed by distillation i.v. of the residual oil afforded 15-42 as colourless oils. In each experiment, the product mixture was analysed by TLC, GC/MS coupling, and ${ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz}$) spectroscopy.

I-Octen-4-one (15) and (E)-2-Octen-4-one ($(E)-16)$ (6:1 mixture, 75% yield from 1). B.p. 56-58\%/15 Torr ([18]: $60-62^{\circ} / 23$ Torr (15), $81-82^{\circ} / 20$ Torr $((E)-16)$).

15: $R_{\mathrm{f}} 0.66$. IR: $1710 .{ }^{1} \mathrm{H}$-NMR: $0.90(t, J=7,3 \mathrm{H}) ; 1.31(\mathrm{~m}, 2 \mathrm{H}) ; 1.56(\mathrm{~m}, 2 \mathrm{H}) ; 2.44(t, J=7,2 \mathrm{H}) ; 3.17(d$, $J=7,2 \mathrm{H}) ; 5.14$ (br. $\left.d_{,}, J=18,1 \mathrm{H}\right) ; 5.18$ (br. $\left.d, J=11,1 \mathrm{H}\right) ; 5.92(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}: 126\left(2, \mathrm{M}^{+\cdot}\right), 85(100), 69(16), 57$ (98), 41 (59).

16: $R_{\mathrm{f}} 0.50$. IR: 1685 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.91(t, J=7,3 \mathrm{H}) ; 1.00-1.60(4 \mathrm{H}) ; 1.89(d d, J=7,2,3 \mathrm{H}) ; 6.12$ (br. d, $J=15,1 \mathrm{H}) ; 6.84(m, 1 \mathrm{H}) . \mathrm{MS}: 126\left(1, M^{+}\right), 111(4), 97(3), 84(27), 69(100), 41$ (22).

2-Methyl-1-octen-4-one (17) and 2-Methyl-2-octen-4-one (18) (5:1 mixture, 79% yield from 2). B.p. 64-68 $/ 15$ Torr.

17: $R_{\mathrm{f}} 0.71$. IR: $1705 .{ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}: 0.90(t, J=7,3 \mathrm{H}) ; 1.32(\mathrm{~m}, 2 \mathrm{H}) ; 1.55(\mathrm{~m}, 2 \mathrm{H}) ; 1.74(\mathrm{~s}, 3 \mathrm{H}) ; 2.45(t, J=7$, $2 \mathrm{H}) ; 3.10(s, 2 \mathrm{H}) ; 4.81$ (br. $s, 1 \mathrm{H}$); 4.94 (br. $s, 1 \mathrm{H}$). MS: $140\left(4, M^{+}\right), 85$ (92), 83 (15), 57 (100), 55 (22), 41 (28).

18: $R_{\mathrm{f}} 0.63$. IR: $1680 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.90(t, J=7,3 \mathrm{H}) ; 1.32(\mathrm{~m}, 2 \mathrm{H}) ; 1.55(\mathrm{~m}, 2 \mathrm{H}) ; 1.88(\mathrm{~s}, 3 \mathrm{H}) ; 2.14(\mathrm{~s}, 3 \mathrm{H})$; $2.40(t, J=7,2 \mathrm{H}) ; 6.07$ (br. $s, 1 \mathrm{H})$. MS: $140\left(1, M^{+}\right), 111(2), 98(19), 83(100), 55(29)$.

6-Methyl-1-hepten-4-one (19) [21] and (E)-6-Methyl-2-hepten-4-one ((E)-20) (5:1 mixture, 83\% yield from 3). B.p. $53-56^{\circ} / 15$ Torr.

19: $R_{\mathrm{f}} 0.69$. IR: $1710 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.91(d, J=7,6 \mathrm{H}) ; 2.13(m, 1 \mathrm{H}) ; 2.32(d, J=7,2 \mathrm{H}) ; 3.15(d, J=7,2 \mathrm{H})$; 5.13 (br. $d, J=18,1 \mathrm{H}$); 5.18 (br. $d, J=11,1 \mathrm{H}$); $5.92\left(d d d d, J=18,11,7,7,1 \mathrm{H}\right.$). MS: $126\left(1, M^{+}\right), 85(82), 69$ (19), 57 (100), 41 (49).
(E)-20: $R_{\mathrm{f}} 0.55$. IR: 1685 . ${ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}: 0.92(d, J=7,6 \mathrm{H}) ; 1.89(d d, J=7,2,3 \mathrm{H}) ; 2.14(\mathrm{~m}, 1 \mathrm{H}) ; 2.39(d, J=7$, $2 \mathrm{H}) ; 6.12(\mathrm{br} . d, J=15,1 \mathrm{H}) ; 6.83(d q, J=15,7,1 \mathrm{H})$. MS: $126\left(0.2, M^{+}\right), 111(16), 84(20), 69(100), 41(2 \mathrm{~J})$.

2,6-Dimethyl-1-hepten-4-one (21) and 2,6-Dimethyl-2-hepten-4-one (22) (4:1 mixture, 84% yield from 4). B.p. 60-64 $/ 15$ Torr.

21: $R_{\mathrm{f}} 0.72$. IR: $1704 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.91(d, J=7,6 \mathrm{H}) ; 1.74(\mathrm{~s}, 3 \mathrm{H}) ; 2.14(\mathrm{~m}, 1 \mathrm{H}) ; 2.33(d, J=7,2 \mathrm{H}) ; 3.08(\mathrm{~s}$, $2 \mathrm{H}) ; 4.81$ (br. $s, 1 \mathrm{H}) ; 4.94$ (br. $s, 1 \mathrm{H}$). MS: $140\left(3, M^{+}\right), 85(78), 83(12), 57$ (100), 55 (17), 41 (26).

22: $R_{\mathrm{f}} 0.64$. IR: 1680 . ${ }^{\mathrm{H}} \mathrm{H}$-NMR: $0.92(d, J=7,6 \mathrm{H}) ; 1.88(s, 3 \mathrm{H}) ; 2.14(s, 3 \mathrm{H}) ; 2.15(\mathrm{~m}, 1 \mathrm{H}) ; 2.27(d, J=7$, $2 \mathrm{H}) ; 6.06$ (br. $s, 1 \mathrm{H})$. MS: $140\left(2, M^{+\cdot}\right), 125$ (9), 98 (5), 83 (100), 55 (27).

5-Methyl-I-hepten-4-one (23) and (E)-5-Methyl-2-hepten-4-one ($(E)-\mathbf{2 4})$ (5:1 mixture, 79% yield from 5). B.p. 52-55\%/15 Torr.

23: $R_{\mathrm{f}} 0.68 .1 \mathrm{R}: 1710{ }^{\prime} \mathrm{H}-\mathrm{NMR}: 0.88(t, J=7,3 \mathrm{H}) ; 1.08(d, J=7,3 \mathrm{H}) ; 1.40(\mathrm{~m}, \mathrm{l} \mathrm{H}) ; 1.69(\mathrm{~m}, 1 \mathrm{H}) ; 2.52(t q$, $J=7,7,1 \mathrm{H}) ; 3.21(d, J=7,2 \mathrm{H}) ; 5.13$ (br. $d, J=18,1 \mathrm{H}) ; 5.17$ (br. $d, J=11,1 \mathrm{H}) ; 5.93(d d d d, J=18,11,7,7$, 1 H). MS: 126 (1, $\left.M^{+"}\right), 85(48), 69(11), 57(100), 41$ (44).
(E)-24: $R_{\mathrm{f}} 0.57$. IR: $1686 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.91(t, J=7,3 \mathrm{H}) ; 1.08(d, J=7,3 \mathrm{H}) ; 1.40(m, 1 \mathrm{H}) ; 1.69(m, 1 \mathrm{H}) ; 1.90$ $(d d, J=7,2,3 \mathrm{H}) ; 2.65(t q, J=7,7,1 \mathrm{H}) ; 6.20($ br. $d, J=15,1 \mathrm{H}) ; 6.89(d q, J=15,7,1 \mathrm{H}) . \mathrm{MS}: 126\left(0, M^{+}\right), 111$ (6), 98 (9), 69 (100), 41 (22).

2,5-Dimethyl-7-hepten-4-one (25) and 2,5-Dimethyl-2-hepten-4-one (26) (5:1 mixture, 82% yield from 6). B.p. 62-64\%/15 Torr.

25: $R_{\mathrm{f}} 0.71 . \mathrm{IR}: 1705 .{ }^{\prime} \mathrm{H}-\mathrm{NMR}: 0.88(t, J=7,3 \mathrm{H}) ; 1.07(d, J=7,3 \mathrm{H}) ; 1.38(\mathrm{~m}, 1 \mathrm{H}) ; 1.68(\mathrm{~m}, 1 \mathrm{H}) ; 1.75(s$, $3 \mathrm{H}) ; 2.76(t \mathrm{tq}, J=7,1 \mathrm{H}) ; 3.15(\mathrm{~s}, 2 \mathrm{H}) ; 4.80(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}) ; 4.94(\mathrm{br} . s, 1 \mathrm{H}) . \mathrm{MS}: 140\left(3, M^{+}\right), 85(39), 83(10), 57$ (100), 55 (15), 41 (23).

26: $R_{\mathrm{f}} 0.64$. IR: $1680 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.90(t, J=7,3 \mathrm{H}) ; 1.06(d, J=7,3 \mathrm{H}) ; 1.38(\mathrm{~m}, 1 \mathrm{H}) ; 1.68(m, 1 \mathrm{H}) ; 1.89(s)$ $3 \mathrm{H}) ; 2.14(\mathrm{~s}, 3 \mathrm{H}) ; 2.41(\mathrm{tq}, J=7,7,1 \mathrm{H}) ; 6.10$ (br. $s, 1 \mathrm{H}) . \mathrm{MS}: 140\left(7, \mathrm{M}^{+}\right), 83(100), 55(25), 39(5)$.

1-Cyclopentyl-3-buten-1-one (27) and (E)-J-Cyclopentyl-2-buten-I-one ($(E)-28$) ($7: 1$ mixture, 81% yield from 7). Bulb-to-bulb distillation: b.p. $70-80^{\circ} / 0.04$ Torr 17).

27: $R_{\mathrm{f}} 0.53$. IR: $1710 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.50-1.90(8 \mathrm{H}) ; 2.93(d d d d, J=7,1 \mathrm{H}) ; 3.23(d, J=7,2 \mathrm{H}) ; 5.13(d d, J=18$, $2,1 \mathrm{H}) ; 5.17(d d, J=11,2,1 \mathrm{H}) ; 5.93(m, 1 \mathrm{H}) . \mathrm{MS}: 138\left(2, M^{+\dagger}\right), 123(2), 97(38), 69(100), 41(32)$.
(E)-28: $\boldsymbol{R}_{\mathrm{f}} 0.43$. IR: $1685 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.50-1.90(8 \mathrm{H}) ; 1.90(d d, J=7,2,3 \mathrm{H}) ; 3.07(d d d d, J=7,1 \mathrm{H}) ; 6.18(\mathrm{~m}$, $1 \mathrm{H}) ; 6.87(m, 1 \mathrm{H})$. MS: $138\left(1, \mathrm{M}^{++}\right), 123(22), 97(19), 69(100), 41(21)$.

1-Cyclopentyl-3-methyl-3-buten-1-one (29) and I-Cyclopentyl-3-methyl-2-buten-1-one (30) (5:1 mixture, 85% yield from 8). Bulb-to-bulb distillation: b.p. $70-90^{\circ} / 0.05$ Torr.

29: $R_{\mathrm{f}} 0.54$. IR: 1706 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.55-1.90(8 \mathrm{H}) ; 1.75(s, 3 \mathrm{H}) ; 2.97(d d d d, J=7,1 \mathrm{H}) ; 3.17(s, 2 \mathrm{H}) ; 4.80(\mathrm{br}$. $s, 1 \mathrm{H}) ; 4.94$ (br. $s, 1 \mathrm{H})$. MS: $152\left(2, M^{+}\right), 97(43), 83$ (11), 69 (100), 55 (11), 41 (18).

30: R_{f} 0.50. IR: 1682 . ${ }^{1} \mathrm{H}$-NMR: $1.55-1.90(8 \mathrm{H}) ; 1.89(\mathrm{~s}, 3 \mathrm{H}) ; 2.15(\mathrm{~s}, 3 \mathrm{H}) ; 2.85(\mathrm{ddd}, J=7,1 \mathrm{H}) ; 6.10$ (br. $s, 1 \mathrm{H})$. MS: $152\left(9, M^{+}\right), 111$ (3), 83 (100), 55 (21).

I-Cyclohexyl-3-buten-1-one (31) and (E)-1-Cyclohexyl-2-buten-1-one ((E)-32) (5:1 mixture, 84\% yield from 9). Bulb-to-bulb distillation: b.p. $70-90^{\circ} / 0.05 \mathrm{Torr}^{18}$),

31: $R_{\mathrm{f}} 0.55$. IR: $1710 .{ }^{1} \mathrm{H}$-NMR: $1.10-1.90(10 \mathrm{H}) ; 2.40(\mathrm{~m}, 1 \mathrm{H}) ; 3.21(d, J=7,2 \mathrm{H}) ; 5.12(d d, J=18,2,1 \mathrm{H})$; $5.16(d d, J=11,2,1 \mathrm{H}) ; 5.92(\mathrm{~m}, 1 \mathrm{H})$. MS: $152\left(1, M^{+-}\right), 111(28), 83(100), 69(15), 55(80), 41$ (23).
(E)-32: $R_{f} 0.43$. IR: $1692 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.10-1.90(10 \mathrm{H}) ; 1.89(d d, J=6,2,3 \mathrm{H}) ; 2.54(\mathrm{~m}, 1 \mathrm{H}) ; 6.18(\mathrm{~m}, 1 \mathrm{H})$; $6.88(\mathrm{~m}, \mathrm{l} \mathrm{H})$. MS: $152\left(2, M^{+}\right), 137$ (18), 97 (11), 69 (100), 55 (27), 41 (21).

1-Cyclohexyl-3-methyl-3-buten-1-one (33) and 1-Cyclohexyl-3-methyl-2-buten-1-one (34) (5:1 mixture, 83% yield from 10). Bulb-to-bulb distillation: b.p. $70-90^{\circ} / 0.02$ Torr.

33: $R_{\mathrm{f}} 0.55$. (R: 1710 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.10-1.90(10 \mathrm{H}) ; 1.73(\mathrm{~s}, 3 \mathrm{H}) ; 2.44(\mathrm{~m}, 1 \mathrm{H}) ; 3.14(\mathrm{~s}, 2 \mathrm{H}) ; 4.78(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$; 4.92 (br. s, 1 H). MS: 166 ($2, M^{+}$), 111 (25), 83 (100), 67 (4), 55 (59).

34: $R_{\mathrm{f}} 0.51$. IR: 1680 . ${ }^{\dagger} \mathrm{H}$-NMR: $1.10-1.90(10 \mathrm{H}) ; 1.88(s, 3 \mathrm{H}) ; 2.13(s, 3 \mathrm{H}) ; 2.30(m, 1 \mathrm{H}) ; 6.11(\mathrm{br} . s, 1 \mathrm{H})$. MS: $166\left(7, M^{+}\right), 111(2), 83(100), 67(2), 55(25)$.

2,2-Dimethyl-5-hexen-3-one (35) and (E)-2,2-Dimethyl-4-hexen-3-one ((E)-36) (7:1 mixture, 83% yield from 11). B.p. $48-50^{\circ} / 15 \operatorname{Torr}\left([22]: 48-50^{\circ} / 13 \operatorname{Torr}((E)-36)\right.$).

35: $R_{\mathrm{f}} 0.67$. IR: $1710 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.16(s, 9 \mathrm{H}) ; 3.29(d, J=7,2 \mathrm{H}) ; 5.10(\mathrm{br} . d, J=18,1 \mathrm{H}) ; 5.15$ (br. $d, J=11$, $1 \mathrm{H}) ; 5.94(\mathrm{~m}, 1 \mathrm{H})$. MS: $126\left(1, M^{+}\right), 85(25), 69(7), 57(100), 55(6), 41(41)$.
(E)-36: $R_{\mathrm{f}} 0.59$. IR : $1685 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.15(\mathrm{~s}, 9 \mathrm{H}) ; 1.89$ (br. $d, J=7,3 \mathrm{H}$); 6.52 (br. $d, J=7,1 \mathrm{H}$); $6.95(m$, $1 \mathrm{H})$. MS: $126\left(4, M^{+-}\right), 98(5), 69(100), 57(31), 41$ (28).
${ }^{17}$) (Z)-28 ($\leqslant 2 \%$) was also detected by ${ }^{1} H-N M R$ and GC/MS analysis. ${ }^{1} \mathrm{H}$-NMR: 2.11 (br. $d, J=6,3 \mathrm{H}$). MS: $138\left(9, M^{+}\right), 123(5), 97(10), 69(100), 41(20)$.
$\left.{ }^{18}\right)(Z)-32(\leqslant 2 \%)$ was also detected by ${ }^{1} \mathrm{H}$-NMR and GC/MS analysis. ${ }^{1} \mathrm{H}$-NMR: $2.10(\mathrm{br} . d, J=6,3 \mathrm{H}) . \mathrm{MS}$: 152 (7, M^{+}), 137 (7), 97 (10), 69 (100), 55 (24), 41 (20).

2,2,5-Trimethyl-5-hexen-3-one (37) and 2,2,5-Trimethyl-4-hexen-3-one (38) (3:1 mixture, 79% yield from $\mathbf{1 2)}$. B.p. $60-64^{\circ} \operatorname{Torr}$ ([23]: 164-165 $/ 760 \operatorname{Torr}(38)$).

37: $R_{\mathrm{t}} 0.68$. IR: 1705. ${ }^{1} \mathrm{H}$-NMR: $1.16(s, 9 \mathrm{H}) ; 1.74(s, 3 \mathrm{H}) ; 3.22(s, 2 \mathrm{H}) ; 4.74(s, 1 \mathrm{H}) ; 4.93(s, 1 \mathrm{H}) . \mathrm{MS}: 140$ (2, $\left.M^{+}\right), 85(24), 83(5), 57$ (100), 55 (14), 41 (24).

38: $R_{\mathrm{f}} 0.59$. IR: 1680 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.14(\mathrm{~s}, 9 \mathrm{H}) ; 1.91(\mathrm{~s}, 3 \mathrm{H}) ; 2.1 \mathrm{I}(\mathrm{s}, 3 \mathrm{H}) ; 6.31(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}: 140\left(3, M^{+}\right), 83$ (100), 57 (10), 55 (29), 41 (7).

1-Phenyl-3-buten-1-one (39) and (E)-1-Phenyl-2-buten-1-one ((E)-40) (1.5:1 mixture ${ }^{19}$), 84% yield from 13). B.p. $105110^{\circ} / 15$ Torr.

39: $R_{\mathrm{f}} 0.68$. IR: $1690 .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}: 3.76(d, J=7,2 \mathrm{H}) ; 5.20(\mathrm{br} . d, J=11,1 \mathrm{H}) ; 5.22(\mathrm{br} . d, J=18,1 \mathrm{H}) ; 6.09$ $(m, 1 \mathrm{H}) ; 7.40-8.00(5 \mathrm{H})$. MS: $146\left(46, M^{+}\right), 131(19), 105(92), 77$ (100), $69(29), 51$ (42).
(E)-40: $R_{\mathrm{f}} 0.55$. IR: 1670 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 2.00(d d, J=7,1.5,3 \mathrm{H}) ; 6.90(d, J=15,1 \mathrm{H}) ; 7.07(d q, J=15,7,1 \mathrm{H})$; $7.40-8.00(5 \mathrm{H}) . \mathrm{MS}: 146\left(35, M^{+}\right), 131$ (39), 105 (100), 77 (83), 69 (57), 51 (37).

3-Methyl-1-phenyl-3-buten-1-one (41) and 3-Methyl-1-phenyl-2-buten-1-one (42) (3:1 mixture, 82% yield from 14). B.p. $115-120^{\circ} / 15$ Torr.

41: $R_{\mathrm{f}} 0.77$. IR: 1700 . ${ }^{\mathrm{H}} \mathrm{H}$-NMR: $1.82(s, 3 \mathrm{H}) ; 3.69(s, 2 \mathrm{H}) ; 4.85$ (br. $\left.s, 1 \mathrm{H}\right) ; 4.98$ (br. $\left.s, 1 \mathrm{H}\right) ; 7.40-8.00(5 \mathrm{H})$. MS: $160\left(2, M^{+`), ~} 105\right.$ (100), 77 (45), 51 (14).

42: $R_{\mathrm{f}} 0.70$. IR: $1675 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.02(s, 3 \mathrm{H}) ; 2.21(s, 3 \mathrm{H}) ; 6.75$ (br. $\left.s, 1 \mathrm{H}\right) ; 7.40-7.95(5 \mathrm{H})$. MS: 160 (38 , M^{+}), 159 (24), 145 (46), 105 (55), 83 (71), 77 (100), 55 (68).

Ethyl 3-(4'-Methylphenyl)-2-butenoate (44) ((E/Z) 4:1). A soln. of ethyl (diethoxyphosphory) acetate (80 g , $0.35 \mathrm{~mol})$ in THF (100 ml) was added dropwise, within 30 min to a stirred slurry of $\mathrm{NaH}(55 \%$ dispersion in oil
 further 30 min , a soln. of p-methylacetophenone $(43 ; 42 \mathrm{~g}, 0.30 \mathrm{~mol})$ in THF (250 ml) was added dropwise within 20 min . The mixture was then refluxed for 24 h , cooled to 5°, and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (200 ml) added dropwise. The $\mathrm{H}_{2} \mathrm{O}$ phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ and the combined org. phase washed with sat. aq. NaCl soln. $(3 \times 250$ ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Fractional distillation i.v. afforded $44((E / Z) 4: 1)$ as a colourless oil (51 g , 84%). B.p. $75-80^{\circ} / 0.07$ Torr.
(E)-44: $R_{\mathrm{f}} 0.58$. IR: $1700,1620,1440,1360,1340,1260,1150,1032,864,808$. ${ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}: 1.31(t, J=7,3 \mathrm{H})$; $2.36(s, 3 \mathrm{H}) ; 2.56(d, J=1.5,3 \mathrm{H}) ; 4.21(q, J=7,2 \mathrm{H}) ; 6.13(d, J=1.5,1 \mathrm{H}) ; 7.17(d, J=8,2 \mathrm{H}) ; 7.38(d, J=8$, 2 H). MS: 204 (39, M^{++}), 175 (22), 159 (100), 132 (53), 115 (82), 91 (70), 65 (23).
(Z)-44: $R_{f} 0.53$. IR: $1700 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.11(t, J=7,3 \mathrm{H}) ; 2.16(d, J=1.5,3 \mathrm{H}) ; 2.35(s, 3 \mathrm{H}) ; 4.02(q, J=7$, $2 \mathrm{H}) ; 5.88(d, J=1.5,1 \mathrm{H}) ; 7.12(A B, J=8,4 \mathrm{H}) . \mathrm{MS}: 204\left(38, M^{+}\right), 175(22), 159(100), 132(51), 115(84), 91(70)$, 65 (25).

Ethyl 3-(4'-Methylphenyl)butanoate (45). A soln. of 44 ($(E / Z) 4: 1 ; 49 \mathrm{~g}, 0.24 \mathrm{~mol}$) in EtOH (500 ml) containing $10 \% \mathrm{Pd} / \mathrm{C}(1.5 \mathrm{~g})$ was hydrogenated at r.t. After $70 \min \left(5.51\right.$ of H_{2} absorbed), the mixture was filtered, concentrated, and distilled i.v. to afford 45 as a colourless oil ($48 \mathrm{~g}, 97 \%$). B.p. $67-69^{\circ} / 0.06 \mathrm{Torr}$. $R_{\mathrm{f}} 0.56 .1 \mathrm{R}: 1720$, $1508,1442,1360,1260,1152,1026,812,720 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.18(t, J=7,3 \mathrm{H}) ; 1.28(d, J=7,3 \mathrm{H}) ; 2.30(s, 3 \mathrm{H}) ; 2.55$ $(m, 2 \mathrm{H}) ; 3.24(\mathrm{~m}, 1 \mathrm{H}) ; 4.07(q, J=7,2 \mathrm{H}) ; 7.10(4 \mathrm{H}) . \mathrm{MS}: 206\left(9, M^{+}\right), 132(57), 119(100), 105(10), 91(22), 77$ (8).

2,6-Dimethyl-4- [2^{\prime}-(4"-methylphenyl)propyl]-1,6-heptadien-4-ol (46). A soln. of 45 ($20.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) and 2-methylallyl chloride ($28.6 \mathrm{~g}, 0.3 \mathrm{~mol}$) in $\mathrm{E}_{2} \mathrm{O}(450 \mathrm{ml})$ was added dropwise to a stirred slurry of $\mathrm{Mg}(6.3 \mathrm{~g}, 0.26$ mol) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ under N_{2} at such a rate as to maintain a gentle reflux. After the addition (80 min), THF (100 ml) was added to obtain a clear soln., and the mixture was refluxed for 16 h . To the cooled mixture (ca. 5°) was then added cautiously and dropwise sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(50 \mathrm{ml})$ followed by $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and the combined org. phase washed with sat. aq. NaCl soln. $(3 \times 200 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Distillation i.v. afforded 46 as a colourless oil ($21 \mathrm{~g}, 77 \%$). B.p. $97-99^{\circ} / 0.06$ Torr. $R_{\mathrm{f}} 0.62$. IR: 3560 (br.), $1636,1508,1432,1360,1060,880,810,720 .{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(+\mathrm{D}_{2} \mathrm{O}\right): 1.24(d, J=7,3 \mathrm{H}) ; 1.76(d d, J=14,4,1 \mathrm{H})$; $1.78(\mathrm{~s}, 6 \mathrm{H}) ; 1.95(d d, J=14,9,1 \mathrm{H}) ; 2.17(\mathrm{~m}, 4 \mathrm{H}) ; 2.30(\mathrm{~s}, 3 \mathrm{H}) ; 2.99(\mathrm{~m}, 1 \mathrm{H}) ; 4.70(\mathrm{br} . s, 2 \mathrm{H}) ; 4.89$ (br. $s, 2 \mathrm{H})$; $7.11(A B, J=8,4 \mathrm{H})$. MS: $272\left(0, M^{+}\right), 161(7), 119(100), 105(5), 91(12), 55(8)$.

2-Methyl-6-(4'-methylphenyl)-1-hepten-4-one (47) and 2-Methyl-6-(4'-methylphenyl)-2-hepten-4-one ($=$ arturmerone; 48) A soln. of $46(6 \mathrm{~g}, 0.022 \mathrm{~mol})$ in HMPA (20 ml) was added dropwise within 20 min to a stirred slurry of KH $(0.027 \mathrm{~mol})$ in HMPA $(30 \mathrm{ml})$ at r.t. under N_{2}. After 1 h at r.t., the mixture was heated at 40° for 1 h , cooled, and cautiously poured into cold sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(200 \mathrm{ml})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{ml})$. The combined org. phase was washed with sat. aq. NaCl soln. $\left(3 \times 100 \mathrm{ml}\right.$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and

[^10]concentrated to afford an orange oil (8.9 g) which was purified by CC (silica gel (180 g), cyclohexane/AcOEt $97: 3$) to afford an inseparable $4: 1$ mixture $48 / 47$ as a colourless oil ($4.1 \mathrm{~g}, 86 \%$). B.p. (bulb-to-bulb distillation) 130-150 $/ 0.04$ Torr.

Data of 47: $R_{\mathrm{f}} 0.58 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.23(d, J=7,3 \mathrm{H}) ; 1.65(\mathrm{~s}, 3 \mathrm{H}) ; 2.32(\mathrm{~s}, 3 \mathrm{H}) ; 2.65(\mathrm{~m}, 2 \mathrm{H}) ; 2.99(\mathrm{~s}, 2 \mathrm{H}) ; 3.29$ $(m, 1 \mathrm{H}) ; 4.74$ (br. $s, 1 \mathrm{H}) ; 4.90$ (br. $s, 1 \mathrm{H}) ; 7.10(4 \mathrm{H}) . \mathrm{MS}: 216\left(15, M^{+}\right), 201$ (9), 132 (14), 119 (46), 91 (13), 83 (100).

A soln. of the foregoing $4: 1$ mixture $48 / 47(4 \mathrm{~g}, 0.018 \mathrm{~mol})$ in THF (50 ml) containing $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~g})$ was stirred for 24 h at r.t. and then heated at reflux for a further 22 h . The cooled mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$, washed with sat. aq. NaCl soln. $(3 \times 100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Distillation i.v. afforded a 19:1 mixture $48 / 47$ as a colourless oil ($3.9 \mathrm{~g}, 97 \%$). B.p. $90-92^{\circ} / 0.06$ Torr ([11]: $159-160^{\circ} / 10$ Torr).

Data of 48: $R_{\mathrm{f}} 0.52$. IR: $1680,1610,1506,1430,1370,1002,808,718,680 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.23(d, J=7,3 \mathrm{H}) ; 1.85$ $(s, 3 \mathrm{H}) ; 2.11(\mathrm{~s}, 3 \mathrm{H}) ; 2.31(\mathrm{~s}, 3 \mathrm{H}) ; 2.60(d d, J=14,8,1 \mathrm{H}) ; 2.70(d d, J=14,6,1 \mathrm{H}) ; 3.29(\mathrm{~m}, 1 \mathrm{H}) ; 6.02(\mathrm{~s}, 1 \mathrm{H}) ;$ $7.10(4 \mathrm{H})$. MS: $216\left(20, M^{+}\right), 201$ (13), $132(18), 119(61), 105(9), 83(100), 55(18)$.

Preparation of Alcohols 49-56. - Using the procedure described for the preparation of 1-14 (vide supra), 49-56 were prepared from the corresponding methyl carboxylates.

4-(2^{\prime}-Propenyl)-I,6-heptadien-4-ol (49) (77% yield from methyl 3-butenoate). $R_{\mathrm{f}} 0.39$. B.p. $76-78^{\circ} / 15$ Torr ([24]: 189-192 $/ 760$ Torr). IR: 3450 (br.), 3080, 2990, 1640, 1440, 1000, $920,860 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 2.23$ $(d, J=7,6 \mathrm{H}) ; 4.85-5.25(6 \mathrm{H}) ; 5.90(\mathrm{~m}, 3 \mathrm{H})$. MS: $152\left(0, M^{+}\right), 11 \mathrm{l}(15), 69(81), 55(4), 41(100), 39(20)$.

2,6-Dimethyl-4-(2'propenyl)-1,6-heptadien-4-ol (50) (79\% yield from methyl 3-butenoate). $R_{\mathrm{F}} 0.55$. B.p. 94 $98^{\circ} / 15$ Torr. IR: 3550 (br.), $3080,1642,1440,1380,1080,1000,900,790 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.84(6 \mathrm{H})$; $2.21(s, 4 \mathrm{H}) ; 2.28(d, J=7,2 \mathrm{H}) ; 4.78(2 \mathrm{H}) ; 4.94(2 \mathrm{H}) ; 4.90-5.20(2 \mathrm{H}) ; 5.90(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}: 180\left(0, M^{+\cdot}\right), 125(19)$, 83 (45), 69 (86), 55 (84), 41 (100).

3-Methyl-4-(2^{2}-propenyl)-1,6-heptadien-4-ol (51) (82% yield from methyl 2-methyl-3-butenoate ${ }^{20}$)). $R_{\Gamma} 0.54$. B.p. $88-90^{\circ} / 15$ Torr. IR: 3450 (br.), $3060,2920,1636,1430,1410,1360,986,903 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.03$ $(d, J=7,3 \mathrm{H}) ; 2.26(d, J=7,4 \mathrm{H}) ; 2.36(d q, J=7,7,1 \mathrm{H}) ; 4.80-5.20(6 \mathrm{H}) ; 5.50-6.30(3 \mathrm{H}) . \mathrm{MS}: 166\left(0, M^{+}\right), 125$ (4), $111(5), 83(25), 69(100), 55(71), 41$ (66).

2,6-Dimethyl-4-\{ l'-methyl-2'-propenyl)-1,6-heptadien-4-ol (52) (86\% yield from methyl 2-methyl-3-butenoate ${ }^{21}$)). $R_{\mathrm{f}} 0.77$. B.p. $101-103^{\circ} / 15$ Torr. IR: 3550 (br.), $3050,2900,1630,1430,1362,1050,1000,880,722$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.05(d, J=7,3 \mathrm{H}) ; 1.86(6 \mathrm{H}) ; 2.23(4 \mathrm{H}) ; 2.50(d q, J=7,7,1 \mathrm{H}) ; 4.77(2 \mathrm{H}) ; 4.92$ (2 H); 4.80-5.20 (2 H); $5.93(\mathrm{~m}, 1 \mathrm{H})$. MS: $194\left(0, M^{+}\right), 139(4), 97(5), 83(35), 55(100)$.

3,3-Dimethyl-4-(2^{\prime}-propenyl)-l,6-heptadien-4-ol $(\mathbf{5 3})\left(84 \%\right.$ yield from methyl 2,2 -dimethyl-3-butenoate $\left.{ }^{21}\right)$). R_{f} 0.63. B.p. $95-98^{\circ} / 15$ Torr. IR: 3500 (br.), $3060,2950,1626,1428,1405,988,902 .{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.07$ $(s, 6 \mathrm{H}) ; 2.37(d, J=7,4 \mathrm{H}) ; 4.80-5.20(6 \mathrm{H}) ; 5.60-6.30(2 \mathrm{H}) ; 6.11(d d, J=18,11,1 \mathrm{H}) . \mathrm{MS}: 180\left(0, M^{+}\right), 139(2)$, 111 (5), 97 (11), 69 (100), 55 (10), 41 (29).

2,5,5-Trimethyl-4-(2'-methyl-2'-propenyl)-1,6-heptadien-4-ol(54) [26] (86% yield from methyl 2,2-dimethyl-3butenoate ${ }^{21}$)). $R_{\mathrm{f}} 0.78$. B.p. 117-120 $/ 15$ Torr. IR: 3540 (br.), $3060,2940,1630,1438,1368,1002,880 .{ }^{1} \mathrm{H}-\mathrm{NMR}(60$ $\left.\mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.10(s, 6 \mathrm{H}) ; 1.85(6 \mathrm{H}) ; 2.27(4 \mathrm{H}) ; 4.70-5.20(6 \mathrm{H}) ; 6.15(d d, J=18,11,1 \mathrm{H}) . \mathrm{MS}: 208\left(0, M^{+}\right)$, 153 (4), 97 (18), 83 (51), 69 (100), 55 (84), 41 (23).

4-Benzyl-I,6-heptadien-4-ol (55) (82% yield from methyl phenylacetate). $R_{\mathrm{f}} 0.41$. B.p. $81-84^{\circ} / 0.02$ Torr. IR: 3560 (br.), 3475 (br.), 3080, 3042, 2922, 1640, 1610, 1500, 1440, 1000, $920,796,750,700 .{ }^{1} \mathrm{H}-\mathrm{NMR}(60 \mathrm{MHz}$; $\left.+\mathrm{D}_{2} \mathrm{O}\right): 2.22(d, J=7,4 \mathrm{H}) ; 2.77(\mathrm{~s}, 2 \mathrm{H}) ; 4.90-5.30(4 \mathrm{H}) ; 4.95(\mathrm{~m}, 2 \mathrm{H}) ; 7.27(5 \mathrm{H})$. MS: $202\left(0, \mathrm{M}^{+}\right), 161(3), 119$ (9), 111 (15), 92 (39), 91 (100), 69 (65), 41 (65).

4-Benzyl-2,6-dimethyl-1,6-heptadien-4-ol (56) (85% yield from methyl phenylacetate). $R_{\mathrm{f}} 0.60$. B.p. $91-96^{\circ}$) 0.01 Torr. IR: 3560 (br.), $3080,3040,1642,1608,1500,1380,1252,900,790,750,705 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right)$: $1.83(6 \mathrm{H}) ; 2.20(4 \mathrm{H}) ; 2.80(\mathrm{~s}, 2 \mathrm{H}) ; 4.77(\mathrm{~m}, 1 \mathrm{H}) ; 4.93(\mathrm{~m}, 1 \mathrm{H}) ; 7.23(\mathrm{~s}, 5 \mathrm{H}) . \mathrm{MS}: 230\left(0, M^{+}\right), 180(1), 124(5)$, 91 (26), 83 (5), 63 (10), 56 (100), 55 (52).

General Procedure for the β-Cleavage of Alkoxides 49a-56a: Preparation of Ketones 57-67. - Using the procedure described for the preparation of 1542 (vide supra), $49-56$ were converted to 49 a 56 a which were then heated at either 80° (for 49a-52a) or 40° (for 53a-56a) until completion of the reaction (1-2 h). Workup afforded a

[^11]product mixture whose composition was analysed by TLC, GC/MS coupling, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (360 MHz) spectroscopy; in 3 experiments ($c f$. Table 2: Entries 2, 3, and 4), the mixture was purified by CC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(E)-1,5-Heptadien-4-one (57) and 2,5-Heptadien-4-one $(58 ;(E, E) /(E, Z) 2.8: 1)$ (5:1 mixture, 76% yield from 49). B.p. $70-74^{\circ} / 15$ Torr. ([27]: $58^{\circ} / 23$ Тогг (57); [28]: $62^{\circ} / 15$ Tогг (57)).
(E)-57: $R_{\mathrm{f}} 0.50$ IR: $1700,1680 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.91(\mathrm{br}, d, J=7,3 \mathrm{H}) ; 3.31(d, J=7,2 \mathrm{H}) ; 5.15$ (br. $d, J=18, \mathrm{I}$ H) ; 5.19 (br. $d, J=11,1 \mathrm{H}) ; 5.95(m, 1 \mathrm{H}) ; 6.18$ (br. $d, J=15,1 \mathrm{H}) ; 6.89(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}: 110\left(7, M^{+}\right), 95(62), 77$ (10), 69 (100), 67 (9), 41 (78), 39 (58).
$(E, E)-58[29]: R_{C} 0.34 . \mathrm{IR}: 1670{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.91$ (br. $\left.d, J=7,6 \mathrm{H}\right) ; 6.15(\mathrm{br} . d, J=15,2 \mathrm{H}) ; 6.86(m, 2 \mathrm{H})$. MS: $110\left(16, M^{+}\right), 95(30), 69$ (100), 67 (5), 41 (60), 39 (39).
$(E, Z)-58:{ }^{1} \mathrm{H}$-NMR: 2.10 (br. $\left.d, J=7,3 \mathrm{H}\right) ; 6.32$ (br. $\left.d, J=11,1 \mathrm{H}\right) ; 6.27(m, 1 \mathrm{H}) . \mathrm{MS}: 110\left(6, M^{+}\right), 95(67)$, 69 (100), 41 (44), 39 (32).

6-Methyl-1,5-heptadien-4-one (59) [27][30], (E)-2-Methyl-1,5-heptadien-4-one (60), (E)-2-Methyl-2,5-hepta-dien-4-one (61) [31], 2,6-Dimethyl-1,5-heptadien-4-one (62) [32], and 2,6-Dimethyl-2,5-heptadien-4-one ($=$ Phorone; 63) (0.06:0.2:1.2:2.4:1 mixture, 83% yield from 50). B.p. $75-85^{\circ} / 15$ Torr.

59: $R_{\mathrm{f}} 0.56$. ${ }^{\text {'H}} \mathrm{H}-\mathrm{NMR}: 1.90(\mathrm{~s}, 3 \mathrm{H}) ; 2.15(s, 3 \mathrm{H}) ; 3.17(d, J=7,2 \mathrm{H}) ; 5.13$ (br. $\left.d, J=18,1 \mathrm{H}\right) ; 5.17$ (br. d, $J=11,1 \mathrm{H}) ; 5.95(\mathrm{~m}, 1 \mathrm{H}) ; 6.09$ (br. $s, 1 \mathrm{H}$). MS: $124\left(0, M^{++}\right), 109(2), 83$ (100), 55 (31), 39 (10).

60: $R_{\mathrm{f}} 0.50$. ${ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}: 1.75(\mathrm{~s}, 3 \mathrm{H}) ; 1.90(\mathrm{~d} d, J=7,1.5,3 \mathrm{H}) ; 3.23(s, 2 \mathrm{H}) ; 4.82(\mathrm{br} . s, 1 \mathrm{H}) ; 4.94$ (br. $\left.s, 1 \mathrm{H}\right)$; 6.19 (br. $d, J=15,1 \mathrm{H}) ; 6.90\left(\mathrm{~m}, \mathrm{IH}\right.$). MS: $124\left(2, M^{+}\right), 109(5), 69(100), 41$ (25), 39 (13).

61: $R_{\mathrm{f}} 0.44$. ${ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}: ~ 1.89(d d, J=7,1.5,3 \mathrm{H}) ; 1.92(s, 3 \mathrm{H}) ; 2.15(s, 3 \mathrm{H}) ; 6.16(d d, J=15,1.5,1 \mathrm{H}) ; 6.21$ (br. $s, 1 \mathrm{H}) ; 6.84(\mathrm{~m}, 1 \mathrm{H})$. MS: 124 ($7, \mathrm{M}^{+}$), 109 (100), 83 (25), 69 (12), 55 (14), 39 (20).

62: $R_{\mathrm{f}} 0.67$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.75(s, 3 \mathrm{H}) ; 1.92(s, 3 \mathrm{H}) ; 2.17(s, 3 \mathrm{H}) ; 3.10(s, 2 \mathrm{H}) ; 4.82$ (br. $\left.s, 1 \mathrm{H}\right) ; 4.93$ (br. $\left.s, 1 \mathrm{H}\right)$; 6.14 (br. $s, 1$ H). MS: 138 ($1, M^{+}$), 123 (2), 83 (100), 55 (42), 39 (14).
63. $R_{f} 0.58 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.89(s, 6 \mathrm{H}) ; 2.15(s, 6 \mathrm{H}) ; 6.05$ (br. $\left.s, 2 \mathrm{H}\right)$. MS: $138\left(5, \mathrm{M}^{+}\right), 123(100), 108(11), 95$ (15), 83 (45), 55 (45), 39 (24).

With 51 as substrate, a 2.5:1:0.4:1.4:1.1:1 mixture of $(E)-\mathbf{5 7},(E, E)-58$, (E, Z)-58, (E)-5-methyl-1,5-hepta-dien-4-one (64), (2E,5E)-3-methyl-2,5-heptadien-4-one ($(E, E)-65$), and (2E,5Z)-3-methyl-2,5-heptadien-4-one $((E, Z)-65)$ was isolated in 81% yield. B.p. $75-87^{\circ} / 15$ Torr.

64: $R_{\mathrm{f}} 0.57 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.45(d, J=7,2 \mathrm{H}) ; 5.11$ (br. $\left.d, J=18,1 \mathrm{H}\right) ; 5.15$ (br. $\left.d, J=11,1 \mathrm{H}\right) ; 5.97(\mathrm{~m}, 1 \mathrm{H})$. MS: $124\left(0.5, M^{+}\right), 83(70), 55(100)$.
$(E . E)-65: R_{\mathrm{f}} 0.47{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.97(d d, J=7,1.5,3 \mathrm{H}) . \mathrm{MS}: 124\left(12, M^{+\cdot}\right), 109(88), 81(32), 69(100), 55(59)$.
(E, Z)-65: $R_{f} 0.56 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.10\left(d, J=7,3 \mathrm{H}\right.$). MS: 124 (4, $M^{+\cdot}$), 109 (100), 91 (13), 81 (22), 69 (71), 55 (53).

With 52 as substrate, a mixture of $\mathbf{6 2 (4 7 \%) , 6 3 (2 0 \%) , (E) - 2 , 5 - d i m e t h y l - 1 , 5 - h e p t a d i e n - 4 - o n e ~ (6 6 ; ~} 8 \%$), and (E)-2,5-dimethyl-2,5-heptadien-4-one [34] (67; 4\%) was isolated in 79% yield. B.p. $82-97^{\circ} / 15$ Torr.

66: $R_{\mathrm{f}} 0.70$ MS: $138\left(0.5, M^{+\cdot}\right), 83$ (100), 55 (42).
67: $R_{\mathrm{f}} 0.64$. MS: $138\left(1, M^{+\prime}\right), 123$ (100), 108 (13), 95 (10), 83 (69), 55 (48).
With 53 as substrate, a $2: 1$ mixture $57 / 58((E, E) /(E / Z) 2.8: 1)$ was isolated in 82% yield.
With 54 as substrate, a $3.2: 1$ mixture $\mathbf{6 2} / 63$ was isolated in 83% yield.
With 55 as substrate, a 2.3:1 mixture $57 / 58((E, E) /(E, Z) 2.8: 1)$ was isolated in 84% yield $\left.{ }^{22}\right)$.
With 56 as substrate, a $3.3: 1$ mixture $\mathbf{6 2 / 6 3}$ was isolated in 80% yield ${ }^{22}$).
4-($2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl-2'-cyclohexenyl)-1,6-heptadien-4-ol (69) [13]. Using the procedure described for the preparation of 1-14 (vide supra), methyl α-cyclogeranate (68) [14] was converted to 69 (colourless oil, 83% yield). B.p. $76-79^{\circ} / 0.05$ Torr. $R_{\mathrm{f}} 0.71$. IR: 3580 (br.), $3100,1640,1440,1360,990,910,825 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(+\mathrm{D}_{2} \mathrm{O}\right): 0.90(s, 3 \mathrm{H})$; $1.19(\mathrm{~s}, 3 \mathrm{H}) ; 1.50(\mathrm{~m}, 1 \mathrm{H}) ; 1.83(\mathrm{~s}, 3 \mathrm{H}) ; 1.91(\mathrm{~m}, 1 \mathrm{H}) ; 2.00(\mathrm{~s}, 1 \mathrm{H}) ; 2.10(2 \mathrm{H}) ; 2.34-2.52(4 \mathrm{H}) ; 5.06-5.19(4 \mathrm{H})$; 5.54 (br. $s, 1 \mathrm{H}$); $5.94(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 234\left(0, \mathrm{M}^{+}\right), 123$ (22), 109 (31), 81 (14), 69 (100), 55 (8), 41 (57).
$1-\left(2^{\prime}, 6^{\prime}, 6^{\prime}\right.$-Trimethyl-2'-cyclohexenyl)-3-buten-1-one (70) [8] and 1-($2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl-2'-cyclohexenyl $)-2$ -buten-l-one ($71 ;(E / Z) 1: 1.6)[8]$. Using the procedure described for the β-cleavage of $53 \mathrm{a}-56 \mathrm{a}$ (vide supra), $\mathbf{6 9}$ was converted to a $1.7: 1$ mixture $70 / 71$ ($(E / Z) 1: 1.6$), pale-yellow oil, 48% yield. B.p. (bulb-to-bulb distillation) $100-120^{\circ} / 1$ Torr.
70. $R_{\mathrm{f}} 0.53{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.91(s, 3 \mathrm{H}) ; 0.94(s, 3 \mathrm{H}) ; 1.17(m, 1 \mathrm{H}) ; 1.59(s, 3 \mathrm{H}) ; 1.71(m, 1 \mathrm{H}) ; 2.09(m, 2 \mathrm{H}) ; 2.80$ $(s, 1 \mathrm{H}) ; 3.26(A B X, J=17,7,2 \mathrm{H}) ; 5.11$ (br. $d, J=18,1 \mathrm{H}$); 5.17 (br. $d, J=11,1 \mathrm{H}$); 5.60 (br. $s, 1 \mathrm{H}$); 5.93 (m , $1 \mathrm{H})$. MS: $192\left(2, M^{+}\right), 151$ (10), 123 (100), 91 (12), 81 (45), 69 (30).

[^12](E)-71 (α-Damascone): $R_{\mathrm{f}} 0.42$. IR: $1680,1660,1620,1440,1360,1200,1170,1142,560,820$. ${ }^{4} \mathrm{H}$-NMR: 0.86 $(s, 3 \mathrm{H}) ; 0.95(\mathrm{~s}, 3 \mathrm{H}) ; 1.17(\mathrm{~m}, 1 \mathrm{H}) ; 1.57(\mathrm{~s}, 3 \mathrm{H}) ; 1.70(\mathrm{~m}, 1 \mathrm{H}) ; 1.90(d d, J=7,1.5,3 \mathrm{H}) ; 2.10(\mathrm{~m}, 2 \mathrm{H}) ; 2.89(\mathrm{~s}, 1$ H); 5.62 (br. $s, 1 \mathrm{H}) ; 6.31(d d, J=15,1.5,1 \mathrm{H}) ; 6.89(d q, J=15,7,1 \mathrm{H}) . \mathrm{MS}: 192\left(12, M^{+}\right), 123(25), 107(11), 91$ (12), 81 (28), 69 (100).
$(Z)-71: R_{\mathrm{f}} 0.52 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.89(s, 3 \mathrm{H}) ; 0.94(\mathrm{~s}, 3 \mathrm{H}) ; 1.17(\mathrm{~m}, 1 \mathrm{H}) ; 1.59(\mathrm{~s}, 3 \mathrm{H}) ; 1.70(\mathrm{~m}, \mathrm{I} \mathbf{H}) ; 2.10(\mathrm{dd}, \mathrm{J}=7$, $1.5,3 \mathrm{H}) ; 2.09(\mathrm{~m}, 2 \mathrm{H}) ; 2.69(\mathrm{~s}, 1 \mathrm{H}) ; 5.60(\mathrm{br} . s, 1 \mathrm{H}) ; 6.17(d q, J=11,7,1 \mathrm{H}) ; 6.31$ (br. $d, J=11,1 \mathrm{H}) . \mathrm{MS} ; 192$ (9, M^{+}), 123 (31), 91 (11), 81 (34), 69 (100).

This foregoing mixture was equilibrated ($\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (cat.)/THF, reflux 4 h) to afford (E)-71 in 88% yield.
Also isolated was a 2.4 :I mixture (32% yield from 69) $57 / \mathbf{5 8}((E / E) /(E, Z) 2.8: 1)$, together with a $c a .1: 1$ mixture (39% yield from 69) of 1,3,3-trimethyl-1-cyclohexene (72) [38] and 1,5,5-trimethyl-1-cyclohexene (73) [35].

72: ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.93(s, 6 \mathrm{H}) ; 1.35(\mathrm{~m}, 2 \mathrm{H}) ; 1.60(\mathrm{~m}, 2 \mathrm{H}) ; 1.62(\mathrm{~s}, 3 \mathrm{H}) ; 1.83$ (br. $\left.t, J=7,2 \mathrm{H}\right) ; 5.11$ (br. $\left.s, 1 \mathrm{H}\right)$. MS: 124 ($19, M^{+}$), 109 (100), 81 (14), 67 (21).

73: ${ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}: 0.89(s, 6 \mathrm{H}) ; 1.27(t, J=7,2 \mathrm{H}) ; 1.62(s, 3 \mathrm{H}) ; 1.68(\mathrm{br} . s, 2 \mathrm{H}), 1.99(m, 2 \mathrm{H}) ; 5.34(m, 1 \mathrm{H}) . \mathrm{MS}:$ 124 ($64, M^{+}$), 109 (100), 82 (17), 68 (98).

Preparation of Alcohols 74-83. - Using the procedure described for the preparation of 1-14 (vide supra), 74-83 were prepared from the corresponding methyl carboxylates.

4-Ethenyl-1,6-heptadien-4-ol (74) (64% yield from methyl acrylate). $R_{f} 0.45$. B.p. $62-68^{\circ} / 15$ Torr ([36]: $57.5-58.5^{\circ} / 11$ Torr; [37]: $167^{\circ} / 777$ Torr; $50^{\circ} / 6$ Torr) IR: 3425 (br.), $3060,2900,1638,980,910$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(60 \mathrm{MHz}$; $\left.+\mathrm{D}_{2} \mathrm{O}\right): 2.30(d, J=7,4 \mathrm{H}) ; 4.85-5.35(6 \mathrm{H}) ; 5.50-6.20(2 \mathrm{H}) ; 5.91(d d, J=18,11,1 \mathrm{H}) . \mathrm{MS}: 138\left(0, M^{+}\right), 105(3)$, 97 (31), 91 (6), 77 (7), 55 (100).

4-Ethenyl-2,6-dimethyl-1,6-hepiadien-4-ol (75) (40% yield from methyl acrylate). $R_{f} 0.86$. B.p. $85-90^{\circ} / 15$ Torr. IR: $3530,3060,2920,1638,1438,990,890,724 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.77(6 \mathrm{H}) ; 2.28(s, 4 \mathrm{H}) ; 4.70-5.40(6$ H); $5.89\left(d d, J=18,11,1\right.$ H). MS: $166\left(0, M^{+\cdot}\right), 133,(11), 125(10), 105(40), 91(45), 83(100), 79(19), 55(26)$.

4-(I^{\prime}-Methylethenyl)-1,6-heptadien-4-ol (76) (65% yield from methyl 2 -methylpropenoate). $R_{\mathrm{f}} 0.41$. B.p. $67-69^{\circ} / 15$ Torr. IR: 3500 (br.) , 3060, $1636,1430,1330,982,900,750,718,672 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.73(3$ $\mathrm{H}) ; 2.36(\mathrm{~m}, 4 \mathrm{H}) ; 4.48-5.25(6 \mathrm{H}) ; 5.80(\mathrm{~m}, 2 \mathrm{H})$. MS: $152\left(0, M^{+}\right), 111,(22), 91(8), 69(100), 41(40)$.

2,6-Dimethyl-(I'-methylethenyl)-1,6-heptadien-4-ol (77) (72\% yield from methyl 2-methylpropenoate). R_{f} 0.56 . B.p. $90-91^{\circ} / 15$ Torr. IR: 3530 (br.), $3060,1636,1432,1368,1322,1256,902,762,736,636,610{ }^{1} \mathrm{H}-\mathrm{NMR}(60$ $\left.\mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.76(9 \mathrm{H}) ; 2.34(4 \mathrm{H}) ; 4.75(2 \mathrm{H}) ; 4.87(3 \mathrm{H}) ; 5.06(1 \mathrm{H}) . \mathrm{MS}: 180\left(0, \mathrm{M}^{+\cdot}\right), 125(18), 105(3), 91(4)$, 69 (100), 55 (10), 41 (32).
(E)-4-(2'-Propenyl)-1,5-hepiadien-4-ol (78) (84\% yield from methyl (E)-2-butenoate). $R_{f} 0.39$. B.p. $75-76^{\circ} /$ 15 Torr ([38]: $93.5^{\circ} / 35$ Torr). IR: 3460 (br.), $3090,1640,1440,1000,972,920,810 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.70$ $(d, J=6,3 \mathrm{H}) ; 2.28(d, J=7,4 \mathrm{H}) ; 4.85-5.25(4 \mathrm{H}) ; 5.53(\mathrm{~m}, 2 \mathrm{H}) ; 5.83(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 152\left(0, M^{+\cdot}\right), 111(11), 91(2)$, 69 (100), 55 (3), 41 (30), 39 (12).
(E)-2-Methyl-4-(2^{\prime}-methyl-2'-propenyl)-1,5-heptadien-4-ol (79) (81% yield from methyl (E)-2-butenoate). R_{f} 0.59 . B.p. $90-91^{\circ} / 15$ Torr ([38]: $89^{\circ} / 12$ Torr). IR: 3560 (br.), $3080,1642,1380,1340,975,900,810{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}(60$ $\left.\mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.70(d, J=6,3 \mathrm{H}) ; 1.75(6 \mathrm{H}) ; 2.25(s, 4 \mathrm{H}) ; 4.75(2 \mathrm{H}) ; 4.88(2 \mathrm{H}) ; 5.51(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 180\left(0, M^{+}\right)$, 125 (15), 91 (1), 69 (100), 55 (5), 41 (18), 39 (6).
(E)-5-Methyl-4-(2'-propenyl)-1,5-heptadien-4-ol (80) (90% yield from methyl (E)-2-methyl-2-butenoate). R_{f} 0.43. B.p. $84-86^{\circ} / 15 \operatorname{Torr}\left([38]: 81-82^{\circ} / 11\right.$ Torr). IR: 3450 (br.), $3060,1636,1430,990,902,830,716 .{ }^{i} \mathrm{H}-\mathrm{NMR}$ (60 $\left.\mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.50-1.80(6 \mathrm{H}) ; 2.35(m, 4 \mathrm{H}) ; 4.85-5.05(4 \mathrm{H}) ; 5.60(\mathrm{~m}, 1 \mathrm{H}) ; 5.77(2 \mathrm{H}) . \mathrm{MS}: 166\left(0, M^{+-}\right), 125(21)$, 105 (8), 91 (12), 83 (100), 55 (57), 41 (14).
(E)-2,5-Dimethyl-4-(2'-methyl-2'-propenyl)-1,5-heptadien-4-ol ($\mathbf{8 1}$) (73% yield from methyl (E)-2-methyl-2butenoate). $R_{\mathrm{f}} 0.59$. B.p. $93-94^{\circ} / 15$ Torr ([38]: $105^{\circ} / 15$ Torr). IR: 3530 (br.), $3060,1636,1432,1364,1326,1250$, $880,740,720,640 .{ }^{\dagger} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.58($ br. $d, J=7,3 \mathrm{H}) ; 1.60(s, 3 \mathrm{H}) ; 1.70(6 \mathrm{H}) ; 2.33(A B, J=13$, $4 \mathrm{H}) ; 4.71(2 \mathrm{H}) ; 4.83(2 \mathrm{H}) ; 5.60(\mathrm{~m}, 1 \mathrm{H})$. MS: $194\left(0, M^{+`}\right), 139(8), 105(2), 83$ (100), $55(42)$.

6-Mchhyl-4-(2'-propenyl)-I,5-heptadien-4-ol $(\mathbf{8 2})\left(83 \%\right.$ yield from methyl 3-methyl-2-butenoate $\left.{ }^{23}\right)$). $R_{\mathrm{f}} 0.54$. B.p. $85-88^{\circ} / 15$ Torr. IR: 3450 (br.), $3050,2900,1638,1430,1370,990,902,818 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.71$ $(3 \mathrm{H}) ; 1.85(3 \mathrm{H}) ; 2.25(d, J=7,4 \mathrm{H}) ; 4.90-5.25(4 \mathrm{H}) ; 5.50-6.30(3 \mathrm{H}) . \mathrm{MS}: 166\left(0, \mathrm{M}^{+}\right), 133(10), 125(9), 105$ (40), 91 (44), 83 (100), 55 (26).

2,6-Dimethyl-4-(2'-methyl-2'-propenyl)-1,5-heptadien-4-ol (83) (86% yield from methyl 3-methyl-2-butenoate ${ }^{23}$)). $R_{\text {f }} 0.68$. B.p. $100-101^{\circ} / 15$ Torr. IR: 3530 (br.), $3060,2900,1636,1432,1368,1020,884,838,722$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz} ;+\mathrm{D}_{2} \mathrm{O}\right): 1.70(3 \mathrm{H}) ; 1.81(s, 3 \mathrm{H}) ; 1.85(3 \mathrm{H}) ; 2.33(s, 3 \mathrm{H}) ; 4.78(2 \mathrm{H}) ; 4.90(2 \mathrm{H}) ; 5.20(1 \mathrm{H})$. MS: 194 ($0, M^{+\prime}$), 161 (4), 119 (8), 105 (11), 83 (100), 55 (29).

[^13]General Procedure for the oxy-Cope Rearrangement and/or $\boldsymbol{\beta}$-Cleavage of Alkoxides 74a-83a: Preparation of Ketones 84-103. - A soln. of the corresponding alcohol (10 mmol) in HMPA (5 ml) was added dropwise within 15 min to a stirred slurry of $\mathrm{KH}(11 \mathrm{mmol})$ in HMPA $(25 \mathrm{ml})$ at r.t. under N_{2}. The mixture was stirred at r.t. until TLC indicated completion of the reaction ($30 \mathrm{~min}-2 \mathrm{~h}$). The mixture was then submitted to the same workup procedure described for the preparation of 15-42 (vide supra) to afford a product mixture whose composition was analysed by TLC, GC/MS coupling, and ${ }^{\text {t }} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz})$ spectroscopy; purification was effected by CC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

1,8-Nonadien-4-one (84) [37] and 2,8-Nonadien-4-one $(85 ;(E / Z) 3: 1)$ (5:1 mixture, 81% yield from 74). B.p. 72-78 $/ 15$ Torr.

84: $R_{\mathrm{f}} 0.74$. IR: 2920, 1710, 1638, 985, $910 .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}: 1.68(t t, J=7,7,2 \mathrm{H}) ; 2.06(d t, J=7,7,2 \mathrm{H}) ; 2.45(t$, $J=7,2 \mathrm{H}) ; 3.16(d, J=7,2 \mathrm{H}) ; 4.98(\mathrm{br} . d, J=11,1 \mathrm{H}) ; 5.01(d d, J=18,1.5,1 \mathrm{H}) ; 5.13(d d, J=18,1.5,1 \mathrm{H}) ; 5.18$ $(d d, J=11,1.5,1 \mathrm{H}) ; 5.76(m, 1 \mathrm{H}) ; 5.92(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}: 138\left(0, M^{+}\right), 97(98), 69(100), 55(55), 41(81)$.
(E)-85 [39]: $R_{\mathrm{f}} 0.55$. IR: 1685 . ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}: 1.90(d d, J=7,1.5,3 \mathrm{H}) ; 2.53(t, J=7,2 \mathrm{H}) ; 6.11$ (br. $d, J=15$, $1 \mathrm{H}) ; 6.84(\mathrm{~m}, 1 \mathrm{H})$. MS: $138\left(0.5, \mathrm{M}^{+}\right), 123(7), 109(2), 84(38), 69(100), 41(18)$.
(Z)-85 [40]: $R_{\mathrm{f}} 0.73 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.11(d, J=7,3 \mathrm{H}) . \mathrm{MS}: 138\left(1, M^{+}\right), 123(3), 109(6), 84(29), 69(100), 41$ (20).

2,8-Dimethyl-1,8-nonadien-4-one (86) and 2,8-Dimethyl-2,8-nonadien-4-one (87) (3.7:1 mixture, 84\% yield from 75). B.p. 85-92 $/ 15$ Torr.

86: $R_{\mathrm{f}} 0.75$. IR: $2910,1705,1640,882 .^{1} \mathrm{H}-\mathrm{NMR}: 1.70(s, 3 \mathrm{H}) ; 1.70(\mathrm{~m}, 2 \mathrm{H}) ; 1.75(\mathrm{~s}, 3 \mathrm{H}) ; 2.01(t, J=7,2 \mathrm{H})$; $2.45(t, J=7,2 \mathrm{H}) ; 3.10(s, 2 \mathrm{H}) ; 4.67$ (br. $s, 1 \mathrm{H}) ; 4.72$ (br. $s, 1 \mathrm{H}) ; 4.81$ (br. $s, 1 \mathrm{H}$); 4.94 (br. $s, 1 \mathrm{H}$). MS: 166 (0 , $M^{+`}$), 111 (27), 83 (19), 69 (17), 55 (100), 141 (10).

87: $R_{\mathrm{f}} 0.66$. TR: 1680 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.72(s, 3 \mathrm{H}) ; 1.88(s, 3 \mathrm{H}) ; 2.14(s, 3 \mathrm{H}) ; 2.40(t, J=7,2 \mathrm{H}) ; 6.07$ (br. $\left.s, 1 \mathrm{H}\right)$. MS: $166\left(0, M^{+\cdot}\right), 111$ (3), 98 (13), 83 (100), 55 (23).

5-Methyl-1,8-nonadien-4-one (88) and 5-Methyl-2,8-nonadien-4-one ($89 ;(E / Z) 1: 1)(2.6: 1$ mixture, 78% yield from 76). B.p. $80-84^{\circ} / 15$ Torr.

88: $R_{\mathrm{f}} 0.61$. IR: $3060,2910,1710,1642,1440,985,910 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.09(d, J=7,3 \mathrm{H}) ; 1.41(\mathrm{~m}, 1 \mathrm{H}) ; 1.79(\mathrm{~m}$, 1 H) 2.03 (br. $q, J=7,2 \mathrm{H}$); 2.61 ($\mathrm{m}, 1 \mathrm{H}$); 3.22 (br. $d, J=7,2 \mathrm{H}$); 4.97 (br. $d, J=11,1 \mathrm{H}$); 5.01 (br. $d, J=18$, $1 \mathrm{H}) ; 5.13$ (br. $d, J=18,1 \mathrm{H}) ; 5.18$ (br. $d, J=11,1 \mathrm{H}) ; 5.76(m, 1 \mathrm{H}) ; 5.92(m, 1 \mathrm{H})$. MS: $152\left(0, M^{+}\right), 111$ (29), 83 (35), 55 (100), 41 (41).
(E)-89: $R_{f} 0.45$. IR: $1685 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.90$ (br. $d, J=7,3 \mathrm{H}$); 6.18 (br. $\left.d, J=15,1 \mathrm{H}\right) ; 6.89(d q, J=15,7,1 \mathrm{H})$. MS: $152\left(1, M^{+}\right), 137(3), 98(40), 83(11), 69(100), 55(10), 41$ (19).
(Z)-89: $R_{\mathrm{f}} 0.60 .{ }^{1} \mathrm{H}$-NMR: $2.11(d, J=6,3 \mathrm{H})$. MS: $152\left(1, M^{+}\right), 137(2), 98(40), 83(5), 69(100), 55(10), 41$ (27).

2,5,8-Trimethyl-1,8-nonadien-4-one (90) and 2,5,8-Trimethyl-2,8-nonadien-4-one (91) (3.3:1 mixture, 81% yield from 77). B.p. $98-104^{\circ} / 15$ Torr.

90: $R_{\mathrm{F}} 0.63 .1 \mathrm{R}: 3060,2900,1705,1642,1624,1440,1368,880 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.10(d, J=7,3 \mathrm{H}) ; 1.44(\mathrm{~m}, 1 \mathrm{H})$; $1.71(\mathrm{~s}, 3 \mathrm{H}) ; 1.75(\mathrm{~s}, 3 \mathrm{H}) ; 1.83(\mathrm{~m}, 1 \mathrm{H}) ; 1.98$ (br. $t, J=7,2 \mathrm{H}) ; 2.64(\mathrm{~m}, 1 \mathrm{H}) ; 3.16(\mathrm{~s}, 2 \mathrm{H}) ; 4.67$ (br. $\mathrm{s}, 1 \mathrm{H}) ; 4.72$ (br. $s, 1 \mathrm{H}$) ; 4.80 (br. $s, 1 \mathrm{H}$); 4.95 (br. $s, 1$ H). MS: $180\left(0, M^{+}\right.$), 125 (19), 97 (21), 83 (18), 69 (18), 55 (100).

91: $R_{\mathrm{f}} 0.54$. IR: $1680 .{ }^{1} \mathrm{H}$-NMR: $1.08(d, J=7,3 \mathrm{H}) ; 1.45(\mathrm{~m}, 1 \mathrm{H}) ; 1.71(s, 3 \mathrm{H}) ; 2.65(\mathrm{~m}, 1 \mathrm{H}) ; 1.90(\mathrm{~s}, 3 \mathrm{H})$; $1.98(2 \mathrm{H}) ; 2.15(s, 3 \mathrm{H}) ; 2.49(\mathrm{~m}, 1 \mathrm{H}) ; 4.67$ (br. $s, 1 \mathrm{H}) ; 4.72$ (br. $s, 1 \mathrm{H}) ; 6.10$ (br. $s, 1 \mathrm{H}) . \mathrm{MS}: 180\left(1, M^{+}\right), 112$ (20), 83 (100), 55 (23).

6-Methyl-1,8-nonadien-4-one (92) and 6-Methyl-2,8-nonadien-4-one (93; $(E / Z) 1: 1$) (5:1 mixture, 83% yield from 78). B.p. $80-86^{\circ} / 15$ Torr.

92: $R_{\mathrm{f}} 0.61$. IR: 3100, 2975, 1710, 1644, 1372, 1000, $920 .{ }^{1} \mathrm{H}$-NMR: $0.91(d, J=7,3 \mathrm{H}) ; 1.85-2.20(3 \mathrm{H}) ; 2.23$ $(d d, J=16,8,1 \mathrm{H}) ; 2.46(d d, J=16,5,1 \mathrm{H}) ; 3.15(d, J=7,2 \mathrm{H}) ; 5.01$ (br. $d, J=18,1 \mathrm{H}) ; 5.02$ (br. $d, J=11,1 \mathrm{H})$; 5.14 (br. $d, J=18,1 \mathrm{H}) ; 5.18$ (br. $d, J=11,1 \mathrm{H}) ; 5.74(\mathrm{~m}, 1 \mathrm{H}) ; 5.91(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}: 152\left(0.5, M^{+}\right)$, 111 (58), 83 (22), 69 (75), 55 (100), 41 (68).
(E)-93: $R_{\mathrm{f}} 0.49$. IR: 1685. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.89(d d, J=7,1.5,3 \mathrm{H}) ; 6.12(\mathrm{br} . d, J=15, \mathrm{I} \mathrm{H}) ; 6.84(m, 1 \mathrm{H})$. MS: 152 (1, $\left.M^{+}\right), 137(12), 84(52), 69(100), 41$ (22).
(Z)-93: $R_{\mathrm{f}} 0.60 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.11(d, J=7,3 \mathrm{H})$. MS: $152\left(1, M^{+}\right), 137(6), 109(4), 84(36), 69(100), 41(24)$.
2,6,8-TrimethyI-7,8-nonadien-4-one (94) and $2,6,8$-Trimethyl- 2,8 -nonadien-4-one ($\mathbf{9 5}$) ($6: 1$ mixture, 86% yield from 79). B.p. 104-108 $/ 15$ Torr. 94: $R_{f} 0.68$. IR: $3060,2900,1706,1640,1370,890{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.88(d, J=7,3 \mathrm{H})$; $1.70(s, 3 \mathrm{H}) ; 1.74(s, 3 \mathrm{H}) ; 1.80-2.50(5 \mathrm{H}) ; 3.09(s, 2 \mathrm{H}) ; 4.65$ (br. $s, 1 \mathrm{H}) ; 4.75$ (br. $s, 1 \mathrm{H}) ; 4.81$ (br. $s, 1 \mathrm{H}) ; 4.94$ (br. $s, 1 \mathrm{H})$. MS: $180\left(0, M^{+}\right), 165(2), 125(33), 83(80), 69(87), 55(100), 41$ (16).

95: $R_{\mathrm{f}} 0.58$. IR: $1682 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.88(d, J=7,3 \mathrm{H}) ; 1.70(s, 3 \mathrm{H}) ; 1.80-2.50(5 \mathrm{H}) ; 1.88(s, 3 \mathrm{H}) ; 2.14(s, 3 \mathrm{H})$; 4.65 (br. $s, 1 \mathrm{H}$); 4.75 (br. $s, 1 \mathrm{H}$); 6.05 (br. $s, 1 \mathrm{H}$). MS: 180 ($1, M^{+}$), 165 (2), 125 (4), 98 (15), 83 (100), 55 (15).

5,6-Dimethyl-I,8-nonadien-4-one (96) and 5,6-Dimethyl-2,8-nonadien-4-one (97; (E/Z) 2:1): both are diastereoisomeric $1: 1$ mixtures; $96 / 973: 1,77 \%$ yield from 80. B.p. $86-89^{\circ} / 15$ Torr.

96: $R_{\mathrm{f}} 0.61$. IR: $3060,2930,1710,1636,1440,1376,984,904 .{ }^{1} \mathrm{H}$-NMR: $0.82,0.89,0.99,1.06(4 d, J=7,12 \mathrm{H})$; $1.60-2.80(8 \mathrm{H}) ; 3.21(d, J=7,4 \mathrm{H}) ; 5.01,5.04(2 \mathrm{br} . s, 4 \mathrm{H}) ; 5.13$ (br. $d, J=18,2 \mathrm{H}) ; 5.18$ (br. $d, J=11,2 \mathrm{H}) ; 5.75$ $(m, 2 \mathrm{H}) ; 5.93(\mathrm{~m}, 2 \mathrm{H})$. MS (isomer A): $166\left(0, \mathrm{M}^{+}\right), 125(17), 97(20), 69(28), 55(100), 41$ (25). MS (isomer B): 166 $\left(0, M^{+}\right), 125(17), 97(21), 69(18), 55(100), 41$ (23).
(E)-97: $R_{i} 0.48$. IR: $1685 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.81,0.88,0.99,1.06(4 d, J=7,12 \mathrm{H}) ; 1.90$ (br. $\left.d, J=7,6 \mathrm{H}\right) ; 1.60-2.80$ $(8 \mathrm{H}) ; 5.00-5.10(4 \mathrm{H}) ; 5.76(\mathrm{~m}, 2 \mathrm{H}) ; 6.19(\mathrm{br} . d, J=15,2 \mathrm{H}) ; 6.88(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (isomer A): $166\left(0, M^{+}\right), 151(6)$, $98(52), 83$ (11), 69 (100), 55 (19), 41 (17). MS (isomer B): $166\left(0, M^{+\dagger}\right), 151$ (4), $98(40), 83$ (14), 69 (100), 55 (16), 41 (15).
(Z)-97: $R_{\mathrm{f}} 0.60 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.11(d, J=7,6 \mathrm{H})$.
2,5,6,8-Tetramethyl-1,8-nonadien-4-one (98) and 2,5,6,8-Tetramethyl-2,8-nonadien-4-one (99): both are diastereoisomeric 1:1 mixtures; $98 / 995: 1,82 \%$ yield from 81. B.p. $106-109^{\circ} / 15$ Torr.

98: $R_{\mathrm{f}} 0.65$. IR: $3060,2920,1705,1642,1622,1440,1370,885 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.78,0.85,0.98,1.06(4 d, J=7,12$ $\mathrm{H}) ; 1.68,1.72,1.75,1.76(4 \mathrm{~s}, 12 \mathrm{H}) ; 1.80-2.20(6 \mathrm{H}) ; 2.55(\mathrm{~m}, 2 \mathrm{H}) ; 3.16(2 \mathrm{H}) ; 3.17$ (br.s, 2 H$) ; 4.67,4.69,4.79,4.94$ (4 br. $s, 8$ H). MS (isomer A): 194 ($0, M^{+}$), 139 (17), $97(21), 83(21), 69(100), 55(67)$. MS (isomer B): $194\left(0, M^{+}\right)$, 139 (13), 97 (17), 83 (20), 69 (100), 55 (57).

99: $R_{\mathrm{f}} 0.57$. IR: 1680 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.76,0.84,0.98,1.04(4 d, J=7,12 \mathrm{H}) ; 1.65-2.20(24 \mathrm{H}) ; 2.40(\mathrm{~m}, 2 \mathrm{H}) ; 4.67$, $4.75(2 \mathrm{br} . s, 4 \mathrm{H}) ; 6.09,6.11$ ($2 \mathrm{br} . s, 2 \mathrm{H}$). MS (isomer A): $194\left(0.5, \mathrm{M}^{+}\right), 112(20), 83(100), 55(20)$. MS (isomer B): $194\left(0.5, M^{+}\right), 112(20), 83(100), 55(16)$.

6,6-Dimethyl-1,8-nonadien-4-one (100) and 6,6-Dimethyl-2,8-nonadien-4-one (101; (E/Z) 1:1) (2:1 mixture, 43% yield from 82). B.p. $86-89^{\circ} / 15$ Torr.

100: $R_{\mathrm{f}} 0.68$. IR: $3060,2900,1710,1640,1350,1045,990,910 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.00(s, 6 \mathrm{H}) ; 2.09(d, J=7,2 \mathrm{H})$; $2.32(s, 2 \mathrm{H}) ; 3.13(d, J=7,2 \mathrm{H}) ; 5.02(\mathrm{br} . d, J=18,1 \mathrm{H}) ; 5.07(\mathrm{br} . d, J=11,1 \mathrm{H}) ; 5.11$ (br. $d, J=18,1 \mathrm{H}) ; 5.17$ (br. $d, J=11,1 \mathrm{H}) ; 5.79(m, 1 \mathrm{H}) ; 5.90(\mathrm{~m}, \mathrm{IH}) . \mathrm{MS}: 166\left(0, \mathrm{M}^{+}\right), 125(20), 83(29), 69(100), 55(65), 41(48)$.
(E)-101: $R_{\mathrm{f}} 0.55$. IR: 1685 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.99(s, 6 \mathrm{H}) ; 1.88$ (br. $\left.d, J=7,3 \mathrm{H}\right) ; 2.10(d, J=7,2 \mathrm{H}) ; 2.39(s, 2 \mathrm{H})$; 5.02 (br. $d, J=18,1 \mathrm{H}) ; 5.05$ (br. $d, J=11,1 \mathrm{H}) ; 5.82(\mathrm{~m}, 1 \mathrm{H}) ; 6.12$ (br. $d, J=15,1 \mathrm{H}) ; 6.79(d q, J=15,7,1 \mathrm{H})$. MS: $166\left(0, M^{+}\right), 151(1), 82(15), 69(100), 55(9), 40(22)$.
$(Z)-101: R_{\mathrm{f}} 0.68 .{ }^{3} \mathrm{H}-\mathrm{NMR}: 2.10(d, J=7,3 \mathrm{H})$. MS: $166\left(0, M^{+}\right), 151(4), 125(4), 82(29), 69(100), 55(14)$, 41 (23).

Also isolated was a 3.4:1.4:1 mixture 59/60/61 (35% yield from 82).
2,6,6,8-Tetramethyl-1,8-nonadien-4-one (102) and 2,6,6,8-Tetramethyl-2,8-nonadien-4-one (103) (2.8:1 mixture, 46% yield from 83). B.p. $107-110^{\circ} / 15$ Torr.

102: $R_{\mathrm{f}} 0.74$. IR: 3060,2900 , $1702,1640,1436,1370,890 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.03(s, 6 \mathrm{H}) ; 1.74(s, 3 \mathrm{H}) ; 1.77(s, 3 \mathrm{H})$; $2.11(s, 2 \mathrm{H}) ; 2.38(2 \mathrm{H}) ; 3.07(s, 2 \mathrm{H}) ; 4.65$ (br. $s, 1 \mathrm{H}) ; 4.79$ (br. $s, 1 \mathrm{H}) ; 4.87$ (br. $s, 1 \mathrm{H}$); 4.93 (br. $s, 1 \mathrm{H}$). MS: 194 ($0, M^{+\cdot}$), 139 (23), 97 (23), 83 (80), 55 (100).

103: $R_{\mathrm{f}} 0.62$. IR: $1680 .{ }^{1} \mathrm{H}$-NMR: $1.03(s, 6 \mathrm{H}) ; 1.77(s, 3 \mathrm{H}) ; 1.87(s, 3 \mathrm{H}) ; 2.08(s, 2 \mathrm{H}) ; 2.13(s, 3 \mathrm{H}) ; 2.32(s$, $2 \mathrm{H}) ; 4.66$ (br. $s, 1 \mathrm{H}$); 4.87 (br. $s, 1 \mathrm{H}$); 6.05 (br. $s, 1 \mathrm{H}$). MS: $194\left(0, M^{+}\right.$), $179(5), 96(11), 83$ (100), 55 (20).

Also isolated was a 2.3:1 mixture $\mathbf{6 2 / 6 3}$ (38% yield from 83).
4-($2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl- I^{\prime}-cyclohexenyl)-I, 6 -heptadien-4-ol (106) [13]. Using the procedure described for the preparation of 1-14 (vide supra), methyl β-cyclogeranate (104) [14] was converted to $\mathbf{1 0 6}$ (colourless oil, 85% yield). B.p. $74-76^{\circ} / 0.04$ Torr. $R_{f} 0.80$. IR: 3580 (br.), 3090, 1640, 1360, $1000,918,722 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(+\mathrm{D}_{2} \mathrm{O}\right): 1.24(s, 6$ $\mathrm{H}) ; 1.39(\mathrm{~m}, 2 \mathrm{H}) ; 1.49(\mathrm{~m}, 2 \mathrm{H}) ; 1.72(\mathrm{~s}, 3 \mathrm{H}) ; 1.95(d d, J=6,6,2 \mathrm{H}) ; 2.34(d d, J=14,8,2 \mathrm{H}) ; 2.81(d d, J=14,7$, $2 \mathrm{H}) ; 5.09(d, J=18,2 \mathrm{H}) ; 5.12(d, J=10,2 \mathrm{H}) ; 5.87(m, 2 \mathrm{H}) . \mathrm{MS}: 234\left(0, M^{+}\right), 193(15), 151(100), 123(45), 81$ (32), 69 (15), 55 (12), 41 (53).

4-($2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl- $I^{\prime}, 3^{\prime}$-cyclohexadienyl $)$-1,6-heptadien-4-ol (107) [13]. Using the procedure described for the preparation of $1-14$ (vide supra), methyl β-safranate (105) [17] was converted to 107 (colourless oil, 83% yield). B.p. $89-90^{\circ} / 0.09$ Torr. $R_{\mathrm{f}} 0.80$. IR: 3580 (br), $3090,1640,1360,1000,918,750,721 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(+\mathrm{D}_{2} \mathrm{O}\right): 1.19(s, 6$ H); $1.85(s, 3 \mathrm{H}) ; 2.02(2 \mathrm{H}) ; 2.34(d d, J=14,8,2 \mathrm{H}), 2.86(d d, J=14,6.5,2 \mathrm{H}) ; 5.12(d, J=10,2 \mathrm{H}) ; 5.13(d$, $J=18,2 \mathrm{H}) ; 5.67(2 \mathrm{H}) ; 5.88(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: 232\left(0, \mathrm{M}^{+\cdot}\right), 191(21), 149(100), 121$ (13), 105 (19), 91 (24), 41 (55).

I-\{ $2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl-I'-cyclohexenyl)-3-buten-I-one (108) [8] and I-($2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl-I'-cyclohexenyl)-2-buten-I-one ($109 ;(E / Z) 1.5: 1$) [8]. Using the procedure described for the oxy-Cope rearrangement and/or β-cleavage of 74a 83a (vide supra), $\mathbf{1 0 6}$ was converted to a 0.6 :1 mixture $\mathbf{1 0 8 / 1 0 9}$ ($(E / Z) 1.5: 1$). Pale-yellow oil, 70% yield, b.p. (bulb-to-bulb distillation) $100-130^{\circ} / 0.1$ Torr.

108: $R_{\mathrm{f}} 0.44$. ${ }^{\mathrm{H}} \mathrm{H}$-NMR: $1.07(s, 6 \mathrm{H}) ; 1.57(s, 3 \mathrm{H}) ; 5.11$ (br. $\left.d, J=18,1 \mathrm{H}\right) ; 5.18$ (br. $d, J=11,1 \mathrm{H}$); $6.01(m$, 1 H). MS: $192\left(4, M^{+}\right), 177(15), 151$ (100), 120 (40), 81 (41).
(E)-109 (β-Damascone): $R_{\mathrm{f}} 0.35$. IR: 1670, 1640, 1620, 1440, 1370, 1360, 1280, 1230, 1160, 970, 928. ${ }^{1} \mathrm{H}$-NMR: $1.02(\mathrm{~s}, 6 \mathrm{H}) ; 1.46(\mathrm{~m}, 2 \mathrm{H}) ; 1.51(\mathrm{~s}, 3 \mathrm{H}) ; 1.69(\mathrm{~m}, 2 \mathrm{H}) ; 1.92(d d, J=7,1.5,3 \mathrm{H}) ; 1.99(d d, J=6,6,2 \mathrm{H})$; 6.16 (br. $d, J=15,1 \mathrm{H}) ; 6.73(d q, J=15,7,1 \mathrm{H}) . \mathrm{MS}: 192\left(30, M^{+}\right), 177(100), 135(20), 123(50), 107(32), 81(24)$, 69 (34).
(Z)-109: $R_{\mathrm{f}} 0.44 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.07(s, 6 \mathrm{H}) ; 1.57(s, 3 \mathrm{H}) ; 2.14(d, J=6,3 \mathrm{H}) . \mathrm{MS}: 192\left(31, M^{+}\right), 177(100), 135$ (20), 123 (53), 107 (35), 81 (29), 69 (34).

This foregoing mixture was equilibrated ($\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (cat.), THF, reflux 16 h) to afford (E)-109 in 89% yield (62% yield from 106).

I-($2^{\prime}, 6^{\prime}, 6^{\prime}$-Trimethyl- $I^{\prime}, 3^{\prime}$-cyclohexadienyl)-3-buten-I-one (110) [13] and $1-\left(2^{\prime}, 6^{\prime}, 6^{\prime}\right.$-Trimethyl- $I^{\prime}, 3^{\prime}$-cyclohexa-dienyl)-2-buten-I-one ($\mathbf{1 1 1} ;(E / Z) 0.8: 1)$ [8]. Using the aforementioned procedure (vide supra), $\mathbf{1 0 7}$ was converted to a $1: 1.7$ mixture $110 / 111((E / Z) 0.8: 1)$. Pale-yellow oil, 45% yield, b.p. (bulb-to-bulb distillation) $120-150^{\circ} / 0.1$ Torr.

110: $R_{f} 0.50 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.10(s, 6 \mathrm{H}) ; 1.73(s, 3 \mathrm{H}) ; 2.10(d, J=3,2 \mathrm{H}) ; 3.34(d, J=7,2 \mathrm{H}) ; 5.14$ (br. $d, J=18$, $1 \mathrm{H}) ; 5.19$ (br. $d, J=11,1 \mathrm{H}) ; 5.83(2 \mathrm{H}) ; 5.99(m, 1 \mathrm{H}) . \mathrm{MS}: 190\left(2, M^{+}\right), 149(100), 121(18), 105(26), 91(15), 79$ (11).
(E)-111 (β-Damascenone): $R_{\mathrm{f}} 0.32$. IR: $1660,1630,1610,1440,1396,1374,1356,1282,1246,1220,962,924$, 698. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.05(s, 6 \mathrm{H}) ; 1.64(s, 3 \mathrm{H}) ; 1.94(d d, J=7,1.5,3 \mathrm{H}) ; 2.12(d, J=3,2 \mathrm{H}) ; 5.83(2 \mathrm{H}) ; 6.19$ (br. d, $J=15,1 \mathrm{H}) ; 6.84(d q, J=15,7,1 \mathrm{H})$. MS: $190\left(15, M^{+}\right), 175(6), 121(67), 105(20), 91(10), 69(100), 41$ (22).
$(Z)-111: R_{\mathrm{f}} 0.43$. ${ }^{\mathrm{I}} \mathrm{H}$-NMR: $1.08(s, 6 \mathrm{H}) ; 1.71(s, 3 \mathrm{H}) ; 2.12(d, J=3,2 \mathrm{H}) ; 2.15(d, J=6,3 \mathrm{H}) ; 5.83(2 \mathrm{H}) ;$ $6.23(2 \mathrm{H})$. MS: $190\left(19, M^{+}\right), 175$ (7), 121 (81), 105 (23), 91 (12), 69 (100), 41 (26).

Also detected (TLC and GC analysis) was a complex mixture 112/(E/Z)-113 (diastereoisomeric mixtures): ca. 26% yield.

The crude mixture 110-113 was treated with a catalytic amount of TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ in refluxing THF for 16 h to afford a $1.7: 1$ mixture of $(E)-111$ and (E$)-I-/ 2^{\prime}$ - ($2^{\prime \prime}$-propenyl $)-2^{\prime}, 6^{\prime}, 6^{\prime}$-trimethyl- $3^{\prime \prime}$-cyclohexenyl $/$-2-buten-1-one $((E)-113$; cis/trans $1.6: 1)$ which, after a standard aq. workup, was purified by CC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $(E)-111$ (40% yield from 107) and (E)-113 (cis/trans 1.6:1): colourless oil, 24% yield from 107.
cis-(E)-113: $R_{\mathrm{f}} 0.50 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.94(s, 3 \mathrm{H}) ; 1.08(s, 3 \mathrm{H}) ; 1.16(s, 3 \mathrm{H}) ; 1.70-2.10(6 \mathrm{H}) ; 2.54(d d, J=14,8$, $1 \mathrm{H}) ; 2.82(\mathrm{~s}, 1 \mathrm{H}) ; 4.97$ (br. $d, J=18,1 \mathrm{H}) ; 5.01$ (br. $d, J=11,1 \mathrm{H}) ; 5.48(\mathrm{br} . d, J=10.5,1 \mathrm{H}) ; 5.59(d d d, J=10.5$, $4,4,1 \mathrm{H}) ; 5.79(m, 1 \mathrm{H}) ; 6.21$ (br. $d, J=15,1 \mathrm{H}) ; 6.81(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 203.0(s) ; 14 \mathrm{I} .4(d) ; 135.8(d) ; 135.4(d)$; 134.1 (d); $123.4(d) ; 117.5(t) ; 62.2(d) ; 42.3(t) ; 40.4(t) ; 37.8(s) ; 33.4(s) ; 30.9(q) ; 29.1(q) ; 24.8(q) ; 18.2(q)$. MS: $232\left(0, M^{+}\right), 191(5), 135(25), 125$ (22), 107 (19), 91 (24), 69 (100), 41 (53).
trans-(E)-113: $R_{\mathrm{f}} 0.50 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.90(s, 3 \mathrm{H}) ; 1.04(s, 3 \mathrm{H}) ; 1.16(s, 3 \mathrm{H}) ; 1.70-2.10(7 \mathrm{H}) ; 2.90(s, 1 \mathrm{H}) ; 5.03$ (br. $d, J=18,1 \mathrm{H}$) ; 5.11 (br. $d, J=11,1 \mathrm{H}$) ; 5.35 (br. $d, J=10.5,1 \mathrm{H}$); 5.62 ($\mathrm{m}, 1 \mathrm{H}$) ; 5.79 ($m, 1 \mathrm{H}$) $; 6.17$ (br. d, $J=15,1 \mathrm{H}) ; 6.81(\mathrm{~m}, \mathrm{I} \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR: $202.9(\mathrm{~s}) ; 141.3(\mathrm{~d}) ; 135.6(\mathrm{~d}) ; 135.5(\mathrm{~d}) ; 135.3(\mathrm{~d}) ; 124.0(\mathrm{~d}) ; 117.8(t) ; 57.9$ $(d) ; 48.1(t) ; 41.2(t) ; 39.1(t) ; 33.5(s) ; 30.6(q) ; 24.1(q) ; 23.7(q) ; 18.1(q) . \mathrm{MS}: 232\left(0, M^{+}\right), 191(7), 135(27), 107$ (18), 91 (28), 69 (100), 41 (42).

REFERENCES

[1] R. L. Snowden, K. H. Schulte-Elte, Helv. Chim. Acta 1981, 64, 2193; R. L. Snowden, P. Sonnay, J. Org. Chem. 1984, 49, 1464.
[2] R.L. Snowden, Helv. Chim. Acta 1983, 66, 1031.
[3] D. J. Cram, A. Langcmann, W. Lwowski, K. R. Kopecky, J. Am. Chem. Soc. 1959, 81, 5760.
[4] T. Holm, Acta Chem. Scand. Ser. B 1976, 30, 985.
[5] D. A. Evans, D. J. Baillargeon, Tetrahedron Lett. 1978, 3315 and ref. cit. therein.
[6] R. A. Benkeser, M. P. Siklosi, E. C. Mozdzen, J. Am. Chem. Soc. 1978, 100, 2134.
[7] R.L. Snowden, B. L. Muller, K. H. Schulte-Elte, Tetrahedron Lett. 1982, 23, 335; to Firmenich SA, Eur. Pat. 70995 (prior. 23.7.1981) (CA: 1983, 99, 22244d); to Firmenich SA, Eur. Pat. 73301 (prior 14.8.1981) (CA: 1983, $99,70210 \mathrm{~m}$).
[8] E. Demole, P. Enggist, U. Säuberli, M. Stoll, E. sz. Kovats, Helv. Chim. Acta 1970, 53, 541; E. Dcmole, D. Berthet, ibid. 1971, 54, 681; W. Renold, R. Näf-Müllcr, U. Keller, B. Willhalm, G. Obloff, ibid. 1974, 57, 1301; E. sz. Kovats, E. Demole, G. Ohloff, M. Stoll, to Firmenich SA, U.S. Pat. 3,928,456 (prior. 9.11.1967) (CA: 1976, 85.46082 m); for syntheses, see [9] and ref. cit. therein.
[9] C. Fehr, J. Galindo, Helv. Chim. Acta 1986, 69, 228.
[10] K. Suga, S. Watanabe, T. Fujita and T. Kuramochi, Yukagaku Zasshi 1977, 26, 792.
[11] H. Rupe, A. Gassmann, Helv. Chim. Acta 1936, 19, 569
[12] D.A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.
[13] K. H. Schulte-Elte, to Firmenich SA, Ger. Offen. 2,305, 140 (prior. 3.2.1972) (CA: 1973, 79, 115743t).
[14] F. Tiemann, E. Simmler, Ber. Dtsch. Chem. Ges. 1900, 33, 3708; L. Ruzika, H. Schinz, Helv. Chim. Acta 1940, 23, 959; K. H. Schulte-Elte, H. Strickler, F. Gautschi, W. Pickenhagen, M. Gadola, J. Limacher, B. L. Muller, F. Wuffli, G. Ohloff, Liebigs Ann. Chem. 1975, 484.
[15] D. A. Evans, J. V. Nelson, J. Am. Chem. Soc. 1980, 102, 774 and ref. cit. therein.
[16] D. A. Evans, D. J. Baillargeon, J. V. Nelson, J. Am. Chem. Soc. 1978, 100, 2242.
[17] K. H. Schulte-Elte, B. L. Muller, B. Egger, to Firmenich SA, Eur. Pat. 46606 (prior. 26.8.1980) (CA: 1982, 97, 24036v).
[18] T. Fujita, S. Watanabe, K. Suga, T. Inaba, T. Takagawa, J. Appl. Chem. Biotechnol. 1978, 28, 882.
[19] Y.Y. Tsmur, B. N. Dashkevich, Zh. Obshch. Khim. 1963, 33, 1357.
[20] B. N. Dashkevich, Ukrain. Khim. Zhw. 1955, 21, 335.
[21] P. Castan, Compt. Rend. 1964, 258, 526.
[22] S. G. Powell, W.J. Wasserman, J. Am. Chem. Soc. 1957, 79, 1934.
[23] J. Colonge, J. Grenet, Bull. Soc. Chim. Fr. 1954, 1304.
[24] A.I. Krutman, Zh. Obshch. Khim. 1952, 22, 1342.
[25] J. F. Lane, J. D. Roberts, W. G. Young, J. Am. Chem. Soc. 1944, 66, 543.
[26] T. Fujita, K. Suga, S. Masamura, Y. Hamatani, K. Miharu, Yukagaku Zasshi 1983, 32, 389.
[27] T.W. Gibson, W.F. Erman, J. Org. Chem. 1972, 37, 1148.
[28] H. R. Henze, B. B. Allen, W. B. Leslic, J. Org. Chem. 1942, 7, 326.
[29] H.O. Krabbenhoft, J. Org. Chem. 1979, 44, 4285.
[30] W. C. Agosta, S. Wolff, J. Org. Chem. 1980, 45, 3139.
[31] R. Hollenstein, W. von Philipsborn, Helv. Chim. Acta 1972, 55, 2030.
[32] K. J. Crawley, R. A. Schneider, J. Meinwald, J. Chem. Soc. (C) 1966, 571.
[33] R. V. Tokmadzhyan, S. K. Pirenyan, S. A. Vartanyan, Arm. Khim. Zh. 1972, 25, 35; K. Ranganayakuluk, T. S. Sorensen, Can. J. Chem. 1972, 50, 3534.
[34] I. Yu. Kibina, Sh. M. Musantaeva, A. V. Shchelkunov, Deposited Doc. 1982, VINITI 4408-82 (CA: 1984, 100, 102702 f).
[35] Y.H. Suen, H. B. Kagan, Bull. Soc. Chim. Fr. 1970, 3552.
[36] I. N. Nazarov, A. I. Kakhniashvili, Zh. Obshch. Khim. 1954, 24, 919.
[37] A. Viola, E. J. Iorio, J. Org. Chem. 1970, $35,856$.
[38] J. Munch-Petersen, P. Moller Jorgensen, S. Refn, Acta Chem. Scand. 1959, 13, 1955.
[39] M. Bortolussi, R. Bloch, J. M. Conia, Bull. Soc. Chim. Fr. 1975, 2722.
[40] M. Bortolussi, R. Bloch, J. M. Conia, Tetrahedron Lett. 1973, 2499.

[^0]: ${ }^{1}$) This cleavage is probably heterolytic although a mechanism involving homolytic cleavage via a ketyl intermediate cannot be excluded; for a mechanistic discussion, see [3-5].

[^1]: ${ }^{2}$) Enolatisation of II by Ia has previously been considered to be more likely [6]; however, for certain cyclic substrates, we have shown that intramolecular enolate formation is effected by III via a 1,5-H shift [1] [2].
 ${ }^{3}$) Part of this work has been the subject of preliminary communications [7].
 ${ }^{4}$) For a discussion of this problem and an elegant solution for the direct synthesis of propenyl ketones from carboxylic esters, see [9].
 ${ }^{5}$) For the synthesis of propenyl ketones via the thermal retro-ene reaction of bis(homoallylic) alcohols, see [10].
 ${ }^{6}$) For all the β-cleavages described throughout this work, KH/HMPA was the base/solvent system employed; however, t-BuOK (1.5 mol-equiv.) in HMPA or other dipolar aprotic solvents such as dimethylformamide (DMF) and N-methylpyrrolidone (NMP) gives similar results.

[^2]: ${ }^{7}$) Each isomeric mixture $\mathbf{I X} / \mathbf{X}$ can be readily equilibrated under acidic conditions (e.g. TsOH/THF, reflux) to afford almost exclusively $(>90 \%)$ the (E)-configurated α, β-unsaturated ketone $\mathbf{X}\left(\mathrm{R}^{2}=\mathbf{H}\right)$.

[^3]: ${ }^{\text {8 }}$) Small amounts $(\leqslant 3 \%)$ of $(Z)-\mathbf{X}\left(\mathrm{R}^{2}=\mathrm{H}\right)$ detected in the product mixtures of Entries $1,3,5,7,9, I I$, and $/ 3$ (cf. Table 1) by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and GC/MS analysis may be formed either directly by γ-protonation of VIII or, indirectly, from the dienol of IX via a thermolytic $1,5-\mathrm{H}$ shift; as evidence for the latter hypothesis, distillation ($105-110^{\circ} / 15$ Torr) of a crude $1.5: 1$ mixture $39 /(E)-40$ resulted in the formation of a $5: 2.5: 1$ mixture $39 /(Z)-40 /(E)-40$.

[^4]: ${ }^{4}$) Structural identification of 57-67 was effected by inspection of their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (360 MHz), IR, and mass spectra and, when possible, by comparison with published spectral data (cf. Exper. Part).
 ${ }^{10}$) It is assumed that there is no preference for the β-cleavage of either one of the two non-equivalent, diastereotopic 2-propenyl or 2-methyl-2-propenyl groups in 51a and 52a, respectively.

[^5]: ${ }^{11}$) For substrates 53 56, the reaction mechanism is identical to Pathway A (cf. Scheme 4) after β-cleavage of the allylic or benzylic C,C bond in 53a-56a.
 ${ }^{12}$) For evidence of potassium-enolate equilibration following an alkoxide-accelerated oxy-Cope rearrangement, see [12].

[^6]: ${ }^{13}$) By analogy with previous work [1], it is assumed that the β-cleavage of the allylic (or benzylic) $\mathrm{C}-\mathrm{C}$ bond is rate-determining.

[^7]: ${ }^{14}$) Treatment of 69 with t-BuOK (1.5 mol-equiv.) in DMF at 40° afforded (E)-71 in 61% yield, after equilibration with aqueous acid [7].
 ${ }^{15}$) In analogy with $\mathbf{5 1 a}$ (cf. Footnote 10), it is assumed that there is no preference for the β-cleavage of either one of the two diastereotopic 2-propenyl groups in 69a.

[^8]: ${ }^{\text {a }}$) Yield from corresponding methyl carboxylate VI.
 ${ }^{\text {b }}$) Analysis by GC/MS coupling and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (360 MHz) spectroscopy.
 ${ }^{\text {c }}$) Diastereoisomeric $1: 1$ mixture.
 $\left.{ }^{\text {d }}\right) \quad 100 / 101((E / Z) 1: 1)(2: 1)$.
 ${ }^{e}$) \quad 59/60/61 3.4:1.4:1.
 ${ }^{\text {i }}$) \quad 102/103 2.8:1.

[^9]: ${ }^{16}$) Structural assignment of cis- and trans-(E) -113 was effected on the basis of their ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra combined with a ${ }^{13} \mathbf{C},{ }^{1} \mathrm{H}$-correlation experiment ($\mathrm{CH}-\mathrm{CORR}$). In particular, the major component cis-(E)113 where the pseudoaxial allyl group at $\mathrm{C}\left(2^{\prime}\right)$ is cis to the pseudoequatorial but-2-enone side chain at $\mathrm{C}\left(1^{\prime}\right)$, the ${ }^{13} \mathrm{C}$-NMR spectrum exhibits resonances at 42.3 ppm for $\mathrm{C}\left(1^{\prime \prime}\right)$ and 29.1 ppm for $C \mathrm{H}_{3}-\mathrm{C}\left(2^{\prime}\right)$; in the minor component trans-(E)-113 in which the allyl group at $\mathrm{C}\left(2^{\circ}\right)$ is pseudoequatorial and trans to the pseudoequatorial but-2-enone side chain at $\mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(1^{\prime \prime}\right)$ resonates at 48.1 ppm and $\mathrm{CH}_{3}-\mathrm{C}\left(2^{\prime}\right)$ at 23.7 ppm .

[^10]: $\left.{ }^{19}\right)(Z)-40(\leqslant 2 \%)$ was also detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 2.15(d d, J=7,1.5,3 \mathrm{H}) ; 6.44(d q, J=11$, $7,1 \mathrm{H}) ; 6.83(d d, J=11,1.5,1 \mathrm{H})$.

[^11]: ${ }^{20}$) Prepared from 2-methyl-3-butenoic acid [25] by acid-catalysed esterification ($\mathrm{MeOH} / \mathrm{conc} . \mathrm{H}_{2} \mathrm{SO}_{4}$).
 ${ }^{23}$) Prepared from 2,2-dimethyl-3-butenoic acid ($\mathrm{MeOH} /$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) which was readily available by the reaction of prenylmagnesium chloride with CO_{2} in $\mathrm{Et}_{2} \mathrm{O}$ using a procedure analogous to that used for 2-methylbutenoic acid [25].

[^12]: ${ }^{22}$) The formation of toluene in these reactions was demonstrated by GC/MS coupling and ${ }^{1} \mathrm{H}$-NMR analysis of the crude products.

[^13]: ${ }^{23}$) Prepared from 3-methyl-2-butenoic acid by acid-catalysed esterification ($\mathrm{MeOH} /$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$).

